The Global Technology Revolution
Chapter One: IntroductionA number of significant technology-related trends appear poised to have major global effects by 2015. These trends are being influenced by advances in biotechnology, nanotechnology,{1} materials technology, and information technology. This report presents a concise foresight{2} of these global trends and potential implications for 2015 within and among the first three technological areas as well as their intersection and cross-fertilization with information technology. This foresight activity considered potential scientific and technical advances, enabled applications, potential barriers, and global implications. These implications are varied and can include social, political, economic, environmental, or other factors. In many cases, the significance of these technologies appears to depend on the synergies afforded by their combined advances as well as on their interaction with the so-called information revolution. Unless indicated otherwise, references to possible future developments are for the 2015 timeframe.
Some have predicted that whereas the 20th century was dominated by advances in chemistry and physics, the 21st century will be dominated by advances in biotechnology (see, for example, Carey et al., 1999 [22]{3}). We appear to be on the verge of understanding, reading, and controlling the genetic coding of living things, affording us revolutionary control of biological organisms and their deficiencies. Other advances in biomedical engineering, therapeutics, and drug development hold additional promises for a wide range of applications and improvements.
On another front, the U.S. President's proposed National Nanotechnology Initiative projected that "the emerging fields of nanoscience and nanoengineering are leading to unprecedented understanding and control over the fundamental building blocks of all physical things. These developments are likely to change the way almost everything--from vaccines to computers to automobile tires to objects not yet imagined--is designed and made" (National Nanotechnology Initiative, 2000 [178, 179]). This initiative reflects the optimism of many scientists who believe that technological hurdles in nanotechnology can be overcome.
In a third area, materials science and engineering is poised to provide critical inputs to both of these areas as well as creating trends of its own. For example, the cross-disciplinary fields of biomaterials (e.g., Aksay and Weiner, 1998 [131]) and nanomaterials (e.g., Lerner, 1999 [160]) are making promising developments. Moreover, interdisciplinary materials research will likely continue to yield materials with improved properties for applications that are both commonplace (such as building construction) and specialized (such as reconnaissance and surveillance, or aircraft and space systems). Materials of the 21st century{4} will likely be smarter, multi-functional, and compatible with a broad range of environments.
The Technology Revolution
Advances in bio/nano/materials/info technologies are combining to enable devices and systems with potential global effects on individual and public health and safety; economic, social and political systems; and business and commerce. The emerging technology revolution, together with the ongoing process of globalization enabled by the information technology and continued improvements in transportation (e.g., Friedman, 2000 [217]), on the one hand opens up possibilities for increased life span, economic prosperity, and quality of life, and on the other hand introduces further difficulties with privacy and ethical issues (e.g., in biomedical research). It has been argued that the accelerating pace of technological change may lead to a widening of the gap between rich and poor, developed and developing countries. However, increased global connectivity within the technology revolution may itself provide a vehicle for improved education and local technical capabilities that could enable poorer and less-developed regions of the world to contribute to and profit from technological advances via the "cottage industries" of the 21st century.
The maturity of these trends varies. Some are already producing effects and controversy in wide public forums; others hold promise for significant effects by 2015 yet are currently less mature and are mostly discussed in advanced technology forums.
Approach
Rather than providing a long, detailed look, this foresight activity attempted to quickly identify promising movements with potentially significant effects on the world. The study also identified "wild card" technologies that appear less promising or not likely to mature by 2015 yet would have a significant effect on the world if they were successfully developed and applied.
The determination of "global significance" in such a foresight activity depends greatly on the level at which one examines a technology or its components. Individual trends and applications may not rise to significance by themselves, but their collective contributions nevertheless might produce a significant trend. Even the Internet, for example, consists of a large number of applications, systems, and components--many of which might not hold up individually to a standard of global significance yet combined contribute to the overall effect. These varied contributors often come from different technical disciplines. Although multidisciplinary, such trends were grouped based on a dominant technology or a dominant concept of each trend.
Note that there is always a strong element of uncertainty when projecting technological progress and implications for the future. This effort looked for potential foreseeable implications based on progress and directions in current science and technology (S&T) and did not attempt to predict or forecast exact events and timetables. Trends were gleaned from existing outlooks, testimonies, and foresights, providing collective opinions and points of view from a broad spectrum of individuals. As many of these published trends tended to be optimistic and visionary, attempts were made to provide insights on the challenges they will face, yielding a feel not only for possible implications but also for issues that may modulate their development. The goal was to obtain a balanced perspective of current trends and directions, yielding ranges of possibilities rather than a single likely future to give a rich feel for the many possible paths that are being pursued. Such ranges of possible futures include both the optimistic and conservative extremes in technology foresights as well as ranges of optimistic and pessimistic implications of these trends. Some trends that hold promise but are unlikely to achieve global significance by 2015 are also mentioned.
Although the examination of trends can yield a broad understanding of current directions, it will not include unforeseen technological breakthroughs. Unforeseen complex economic, social, ethical, and political effects on technological development will also have a major effect on what actually happens in the future. For example, although many computer scientists and visionary government program managers saw the potential for the Internet{5} technology, it was practically impossible to predict whether it would become globally significant, the pace of its adoption, or its pervasive effect on social, political, and economic systems. Nevertheless, this trend study can yield a broad understanding of current issues and their potential future effects, informing policy, investment, legal, ethical, national security, and intelligence decisions today.
Notes
{1} Broadly defined to include microsystems, nanosystems, and molecular systems.
{2} A foresight activity examines trends and indicators of possible future developments without predicting a single state or timeline and is thus distinct from a forecast or scenario development activity (Coates, 1985; Martin and Irvine, 1989; and Larson, 1999 [1, 2, 3]).
{3} Bracketed numbers indicate the position of the reference in the Bibliography.
{4} See, for example, Good, 1999; Arunachalam, 2000; and ASM, 2000 [124-126].
{5} Formerly called the DARPAnet developed by the Defense Advanced Research Projects Agency (DARPA).
Acronyms | Top | Chapter 2