
  

AFRL-IF-RS-TR-2004-247 
Final Technical Report 
September 2004 
 
 
 
 
 
 
LINK ANALYSIS WORKBENCH 
  
SRI International 
 
  
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AIR FORCE RESEARCH LABORATORY 
INFORMATION DIRECTORATE 

ROME RESEARCH SITE 
ROME, NEW YORK 

 
 

 



  

 STINFO FINAL REPORT 
 
 
 This report has been reviewed by the Air Force Research Laboratory, Information 
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical 
Information Service (NTIS).  At NTIS it will be releasable to the general public, 
including foreign nations. 
 
 
 AFRL-IF-RS-TR-2004-247 has been reviewed and is approved for publication 
 
 
 
 
 
 
 
APPROVED:   /s/ 
   ROBERT L. HAWKINS 
   Project Engineer 
 
 
 
 
 
 
 
 FOR THE DIRECTOR:   /s/ 
     JOSEPH CAMERA, Chief  
     Information & Intelligence Exploitation Division 
     Information Directorate 
 
 
 
 
 
 
 
 
 
 



  

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 074-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302, 
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE
September 2004

3. REPORT TYPE AND DATES COVERED 
FINAL              Sep 01 – Mar 04 

4. TITLE AND SUBTITLE 
 
LINK ANALYSIS WORKBENCH 

6. AUTHOR(S) 
Pauline M. Berry, Ian Harrison, John D. Lowrance, Andres C. Rodriguez, 
Enrique H. Ruspini, Jerome M. Thomere, Michael J. Wolverton 
 

5.  FUNDING NUMBERS 
C     - F30602-01-C-0193 
PE   - 62301E  
PR   - EELD 
TA   -  01 
WU  - 16  
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
 
SRI International 
333 Ravenswood Avenue 
Menlo Park CA 94025 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
 
N/A 

9.  SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
 
AFRL/IFEA 
525 Brooks Road 
Rome NY 13441-4505 

10. SPONSORING / MONITORING 
      AGENCY REPORT NUMBER 
 
AFRL-IF-RS-TR-2004-247 
 

11. SUPPLEMENTARY NOTES 
 
AFRL Project Engineer:  Robert L. Hawkins/IFEA/(315) 330-2243                Robert. Hawkins@rl.af.mil 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 

12b. DISTRIBUTION CODE 
 
 

13. ABSTRACT (Maximum 200 Words) 
In the wake of the 9/11 terrorist attacks on the United States, many questions have been asked and investigations were 
conducted to determine how these attacks could have happened.  The consensus is information was available to warn 
U.S. intelligence organizations of the impending attacks but were not able to “connect the dots”, that is bring the vital 
pieces of information together to paint a clear picture of what is about to happen.  An important role of the intelligence 
organizations is to identify and track situations of interest – terrorist and criminal activity, signs of impending political 
upheaval abroad.  The problem is the analyst is overwhelmed with intelligence reports from many sources that may 
provide them with incomplete or misleading information.  There is a need for information technology to help the analyst 
with identification of threat cases, tracking and analysis of the data to confirm the emerging threat.  The approach taken 
here is one of link discovery by matching transactional data stored in a relational database to a well-defined scenario 
describing a threat situation.  The Link Analysis Workbench (LAW) is designed to find patterns (scenarios) buried within 
vast quantities of large and noisy datasets helping analysts find evidence to support the threat described in the pattern. 
 

15. NUMBER OF PAGES14. SUBJECT TERMS  
Link analysis, pattern matching, graphs, graph-edit distance, ontologies, relational data, 
situational awareness, situational assessment 16. PRICE CODE

17. SECURITY CLASSIFICATION 
     OF REPORT 
 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
     OF THIS PAGE 
 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
     OF ABSTRACT 
 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 
 

UL 

NSN 7540-01-280-5500   Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. Z39-18 
298-102 

87



Table of Contents

1 Introduction 1

2 Patterns and Matching 4
2.1 Pattern Representation . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Pattern Comparison Metric . . . . . . . . . . . . . . . . . . . . . 6
2.3 Matcher Implementation . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Pattern Representation Language: GEM . . . . . . . . . . 8
2.3.2 Matching Algorithm . . . . . . . . . . . . . . . . . . . . 9

2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.1 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Cardinality Results . . . . . . . . . . . . . . . . . . . . . 14
2.4.3 Caching Results . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Metrics for Approximate Pattern Matching . . . . . . . . . . . . . 18

3 Example and Interface 21
3.1 Interface Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Visualization . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.2 Pattern Editing . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.3 Pattern Match Visualization . . . . . . . . . . . . . . . . 26

4 Architecture 26
4.1 High-level Architecture . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 SOAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Integration with Other Pattern-matching Components: TIEs 31
5.1 XML Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.2 TIE Implementations . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.1 2002: TIE1 . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2.2 2002: TIE3 . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.2.3 2003: oddTIE . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Control 36
6.1 Research Challenges . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 Search Control: exploiting knowledge about the pattern . . . . . . 37
6.3 Embedded Control Information . . . . . . . . . . . . . . . . . . . 38
6.4 Strategies to Exploit Structure of a Pattern . . . . . . . . . . . . . 38
6.5 Tasking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

i



A Appendix: Metrics for Approximate Pattern Matching 41
A.1 Introduction to Theory . . . . . . . . . . . . . . . . . . . . . . . 41

A.1.1 Approximate Pattern Matching . . . . . . . . . . . . . . . 41
A.1.2 Abstract Data Representations . . . . . . . . . . . . . . . 43
A.1.3 Data-modeling Approaches . . . . . . . . . . . . . . . . 44
A.1.4 Logic-based Representations . . . . . . . . . . . . . . . . 47
A.1.5 Graph Editing . . . . . . . . . . . . . . . . . . . . . . . . 48
A.1.6 Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . 51
A.1.7 Similarity Measures . . . . . . . . . . . . . . . . . . . . 51

A.2 Pattern Matching and Data Transformations . . . . . . . . . . . . 59
A.2.1 Predicates, Objects, Attributes, and Values . . . . . . . . 59
A.2.2 Databases . . . . . . . . . . . . . . . . . . . . . . . . . . 60
A.2.3 Similarities between Predicate Instances . . . . . . . . . . 62
A.2.4 Database Editing . . . . . . . . . . . . . . . . . . . . . . 65

A.3 Imprecision, Uncertainty, Vagueness . . . . . . . . . . . . . . . . 68
A.3.1 Imprecise Objects, Values, and Relations . . . . . . . . . 69

ii



List of Figures

1 Hierarchical pattern from EELD Y2 challenge problem domain . . 6
2 GEM data structure . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Example of hierarchical patterns . . . . . . . . . . . . . . . . . . 9
4 Effects of heuristics in pattern search . . . . . . . . . . . . . . . . 11
5 Growth of match time with data set size . . . . . . . . . . . . . . 12
6 Growth of match time with data set size, extrapolated to very large

data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
7 Improved efficiency from hierarchy and cardinality on “Group

Gets Resources for Mode” pattern, measured by (a) amount of
search space explored and (b) match time . . . . . . . . . . . . . 15

8 Improved efficiency from hierarchy and cardinality on “Hub-and-
Spoke” pattern, measured by (a) the amount of search space ex-
plored and (b) match time . . . . . . . . . . . . . . . . . . . . . . 16

9 “Two Related Groups Acquiring Threat Resources” pattern . . . . 17
10 Effect of caching as data set size grows on “Two Related Groups

Acquiring Threat Resources” pattern . . . . . . . . . . . . . . . . 17
11 Effect of caching as data set size grows on “Group Gets Resources

for Mode” pattern . . . . . . . . . . . . . . . . . . . . . . . . . . 18
12 Summary of caching results: benefit of caching on largest data set

for (a) “Group Gets Resources for Mode”, (b) “Hub-and-spoke
Communication”, and (c) “Two Related Groups Acquiring Threat
Resources” patterns . . . . . . . . . . . . . . . . . . . . . . . . . 19

13 LAW’s display of the Murder-for-Hire pattern . . . . . . . . . . . 23
14 Ontology browsing . . . . . . . . . . . . . . . . . . . . . . . . . 24
15 SHAKEN interface . . . . . . . . . . . . . . . . . . . . . . . . . 25
16 Results list page . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
17 LAW architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 29
18 LAW’s role in TIE1 . . . . . . . . . . . . . . . . . . . . . . . . . 32
19 TIE3 architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 34
20 oddTIE architecture . . . . . . . . . . . . . . . . . . . . . . . . . 36

iii



1 Introduction

SRI International (SRI) is pleased to submit this final report to the Defense Ad-
vanced Research Projects Agency (DARPA) on SRI Project 11590, “The Link
Analysis Workbench.”

Immediately after the 9/11 attacks, questions arose regarding why the the U.S.
government had been unable to “connect the dots” that would have provided warn-
ing of the impending attacks. An important role of intelligence organizations is
to identify and track situations of interest—terrorist and other criminal activity,
signs of impending political upheaval abroad, and so on—in a sea of noisy and in-
complete information. This requires that they find and understand the significance
of links between new and previously acquired information. The amount of such
information available to these agencies far exceeds the human capacity to analyze
it. Therefore, information technology is needed to assist these analysts if they are
to succeed.

This situation is not unique to federal intelligence agencies. Essentially the
same technical problem confronts forensic accountants, insurance fraud investiga-
tors, bank examiners, criminal investigators, computer security analysts, market
researchers, medical researchers, and others. The common need is to find patterns
within vast quantities of data that reveals what has happened or is about to hap-
pen. A large amount of such data is in relational form (i.e., stored in relational
databases), and we can expect the amount to increase dramatically in the near fu-
ture. There is a critical need for technology that helps analysts find and elaborate
evidence in relational data.

There are at least three different technical approaches to this problem: (1)
find matches in the data for known patterns of interest, (2) find anomalies where
known patterns are violated in the data, and (3) discover new patterns of interest.
Although the first of these might not seem all that difficult, it is difficult when the
amount of data is vast, when the data contains errors of omission and commission
because of faulty collection or handling, and when entities are actively attempting
to deceive and/or conceal their actions. For example, uncovering known forms
of money laundering might be addressed by this method. The second of these is
based on the idea that by identifying those things that do not fit the norm, we can
discover the true nature of things, despite attempts to conceal them. In general,
attempts to do this are exacerbated by the same issues that thwart finding matches
from known patterns. An example where these techniques might be successfully
applied is a criminal investigation where unusually large purchases or holdings
by an individual might suggest a payoff for having engaged in criminal activities.
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The third approach, discovering new patterns, can take at least two forms. Social
network analysis analyzes the types and frequencies of interactions among people
to discern which are acting as groups in pursuit of common goals. Data mining
seeks to discover new patterns of indicators that identify events of interest when
they cannot be directly observed. These techniques might be used to uncover
clandestine organizations or new forms of insurance fraud.

Our approach is based upon finding matches for known patterns of interest.
Although some of these patterns might have been defined through the use of data
mining techniques, we assume that the vast majority will have been directly de-
fined by analysts, that is, subject matter experts in the field of interest. Specif-
ically, we want to develop tools that help analysts define and match patterns in
relational data, where the notion of “match” is very broad and gives the ana-
lyst a large amount of flexibility. By broad we mean to encompass both exact
and close matches, where close matches might include incomplete matches where
some components of the pattern could not be matched, and inexact matches where
the precise type of component specified by the pattern was not found, but a seman-
tically similar component was. A key aspect of this approach is that a numeric
quality of match is calculated, based upon the absences of and substitutions for
components specified in the pattern, indicating the closeness of a match.

For most domains of interest, defining good patterns is difficult. The objec-
tive is to define patterns that identify all examples of a target activity without
misidentifying any examples. To this end, we endeavor to support the analyst in
a generate, test, and refinement cycle, where patterns are defined and matched
against the data, the results are analyzed, and modifications are made to the pat-
tern in hopes of improving its accuracy and precision. We expect this cycle to be
repeated frequently in the early phases of a pattern’s development. Once it ma-
tures, we expect the cycle to slow, but typically not stop, since the actions and
methods employed by those being analyzed will evolve over time. Thus, we ex-
pect a continuous cycle of pattern refinement and spawning of variants. As the
actions and methods employed by those being analyzed evolve, we anticipate that
the broad notion of match that we support will aid the analysts in tracking these
changes. Supporting close matches reduces brittleness; as a method evolves we
anticipate that the quality of match for a given pattern will tend to erode slowly,
giving the analysts an opportunity to spot these variations by examining the lesser
matches. Once spotted, variants on the original pattern can be developed to raise
the system’s ability to find high quality matches for these new methods. As such,
this technique attempts to exploit the identification of anomalies with respect to
the original pattern.
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Our approach is semi-automated, where analysts remain in the loop, constantly
looking to improve the patterns being used. This helps to make our approach ag-
ile in the face of evolving threats and/or opportunities. It is our hope that analysts
will leverage patterns developed by others. This can take several forms. One form
that we support is the hierarchical specification of a pattern that makes use of one
or more patterns as subpatterns. As such, higher-level patterns can be developed
by assembling lower-level patterns. We also support the use of disjunctive com-
ponents within a pattern. These are used when there are multiple ways for a given
aspect of a pattern to be manifest. It is our intent to foster communities of ana-
lysts sharing patterns and results, with appropriate access control, to allow them
to leverage each other’s successes and failures.

For our approach to succeed, it is essential that the patterns and matches be
represented in a form that is intuitive to the analysts, yet rigorous enough to sup-
port automated searches for matches. Since analysts performing link analysis
often explain their patterns and results through graphical drawings, we adopted a
graphical representation. Entities are captured as nodes and relationships as di-
rected connections. These graphical structures are developed by analysts through
a tool that allows them to directly “draw” these structures. Matches are depicted
through use of the same graphical structures that represent patterns, color coded
to indicate the quality of match achieved for each aspect of the pattern. Using
graphs in this way eases communication between humans and machines.

If communities of analysts are to work collaboratively in the development of
patterns and the exploitation of pattern matching results, it is essential that all po-
tential participants have ready access to the system that we are building to support
this. To this end, our approach was to architect the Link Analysis Workbench
(LAW) as a Web server with lightweight browser clients. The only requirement
for the client machines is that they have an industry-standard Web browser in-
stalled and are on a common network with the LAW server. Since Web browsers
are now ubiquitous across all personal computers, no matter the specific choice
of hardware or operating system, no additional software needs to be installed to
give an analyst access to LAW. The LAW system administrator must provide the
analyst with only a user name and password to gain access.

While we believe that our approach has the potential to significantly aid an-
alysts in finding patterns within relational data, we do not believe that our ap-
proach should be pursued at the exclusion of others. Instead, we imagine that our
approach should be used in concert with other techniques based on anomaly de-
tection, social network analysis, data mining, and other link analysis techniques,
to collectively pursue the difficult task of identifying and tracking situations of
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interest within the changing seas of noisy and incomplete relational data.
This report describes the Link Analysis Workbench (LAW) [49, 45], a system

designed to help meet these needs. LAW is designed to allow a domain expert
user to build and refine patterns quickly, to search for matches from a large data
set, and to understand and compare the matches it finds easily. Because the in-
telligence domain involves missing data and even imprecise user understanding
of what the right pattern should be, LAW is specifically focused onapproximate
pattern matches—situations in the data that are similar to, but not exactly the same
as, the situation represented in the pattern. LAW is also designed as a user-centric
system, where the pattern representation and matching criteria are understandable
by an intelligence expert user, and where the user can play an important, hands-on
role in the system’s cycle of authoring, matching, and revising patterns.

We begin by describing LAW’s pattern representation and pattern matching
approach. Then we give an example of LAW’s pattern matching behavior and
describe LAW’s user interface. After that, we describe the architecture and com-
mon pattern language on which LAW is based. Next, we discuss our experience
with integrating LAW with other link analysis tools in Technology Integration Ex-
periments (TIEs). Finally, we describe some issues explored in our work on an
intelligence control component for LAW.

2 Patterns and Matching

The goal of the LAW pattern matching component is to help intelligence analysts1

find instances in the world of generic scenarios comprising combinations of events
and facts about players involved in those events. This problem requires more than
a simple database querying capability because of several sources of ambiguity and
uncertainty within the process. There may be noise or missing information within
the data. The same or similar situations may be represented in multiple different
ways. And, most important, the analyst may be able to describe the situation of
interest only at a high level or with a limited amount of precision.

The model of patterns LAW uses for this problem of approximate matching
is to have each pattern represent two things: (1) aprototypeof the situation of
interest, and (2) allowabledeviationsfrom the prototype, along with the impact
these deviations have on the assessed quality of the match. To fill this model and

1Here and throughout the remainder of this report, we use the term “analyst” as shorthand to
describe the intended end-user of LAW. In practice, LAW is more broadly intended for any intelli-
gence professional, from low-level analysts to high-level managers in the intelligence community.
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to meet the additional requirement of understandability, we have chosen a pattern
representation based on graphs, and a match metric based ongraph edit distance.

2.1 Pattern Representation

A LAW pattern consists of two parts: a graph, representing the prototype situation
described above, and a collection of edit distance parameters, representing the
allowable deviations described above. We describe the former here, and describe
the latter below in Section 2.2.

The graph portion of the pattern representation (called thepattern graph) is
a collection of typed vertices (nodes), and a collection of labeled edges (links)
relating the vertices. Each node in the graph is ageneric concept[43] of a type, or
a literal. The types are organized in an ontology; to access the ontology in LAW,
we are using OCELOT [30], an OKBC-compliant [10] knowledge representation
system. Labels on edges are also typed with the types organized in the ontology.
Specific instances can be approximated in the pattern using literals. For example,
the person Michael Wolverton can be represented by attaching a PERSON node
to a node containing the string “Michael Wolverton” via a NAME relation.2

Our design goal for the pattern graph representation is to give to the analyst a
representational capability that is powerful, but still understandable to a lay-user
and reasonably efficient to match. In particular, we want a pattern language that
stops well short of the representational power and inferential capabilities of first-
order logic or conceptual graphs [43], but still goes beyond the capabilities of
simple flat typed graphs. Toward this end, we extended the design of the pattern
graph representation to include notions of hierarchy, disjunction, and cardinality.3

For example, Figure 1 shows a hierarchical pattern representing a murder-for-hire.
The pattern hierarchically includes two subpatterns, one of which itself includes
a nested subpattern. In this figure, the circles representinterface nodes, nodes
that connect a subpattern to its parent pattern. We upgraded the pattern compari-
son metric and the matching algorithm to handle the more advanced pattern graph
representation, and extended LAW’s pattern matcher to match graphs hierarchi-
cally.

2This encoding representsanyperson named Michael Wolverton, which is often sufficient for
the purposes of pattern matching. If the user needs to identify the person of interest more narrowly,
additional qualifiers (e.g., birthdate) can be used.

3By cardinality, we mean specifying information about the number of links, nodes, or sub-
graphs, e.g. “three or more meetings.”
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Figure 1: Hierarchical pattern from EELD Y2 challenge problem domain

2.2 Pattern Comparison Metric

The term “graph edit distance” covers a class of metrics that measure the degree
of match between two graphs. Variants have been studied theoretically [8, 9] as
well as applied in domains as diverse as image understanding [41] and reasoning
by analogy [48]. In its simplest form, the graph edit distance between two labeled
graphsG1 andG2 is the smallest number of editing operations it would take to
transformG1 intoG2. Allowable editing operations are node addition, node dele-
tion, edge addition, edge deletion, node label replacement (i.e., changing the label
attached to a node from one term to another), and edge label replacement. This
simple model can be extended by adding costs to the various editing operations,
perhaps as a function of the labels on nodes or edges, and measuring the edit dis-
tance between two graphs as the minimum cost of a sequence of operations that
converts one into the other.

LAW uses the more complex model of associating costs with operations. The
current LAW model uses only three of the six aforementioned editing operations:
node deletion, edge deletion, and node replacement.4 Each node and edge in a

4Node addition and edge addition are not relevant in pattern matching (unlike, for example,
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LAW pattern graph has an associated cost for deleting it (see below). For node
label replacement, LAW uses the ontological distance between the types of the
pattern node and the mapped data node.

The collection of edit distance parameters contained within a LAW pattern
specify the allowable deviations from the prototype that will still be considered a
valid match, and the cost that various deviations have on the overall quality of the
match. These parameters control the calculation of the edit distance between the
pattern and the data. They include

• a deletion coston each node and link in the pattern. Each of these can be
a number, which roughly reflects the node’s or link’s level of importance
in the pattern. They can also be set to a symbol representing infinite cost,
which indicates that the node or link must be matched by a node or link in
the data.

• amaximum ontological distanceon each node in the pattern. This specifies
the allowable distance between the type of a pattern node and the type of a
node in the data that matches it. Setting this to 0 indicates that the pattern
node must be matched exactly, e.g,, a PHONE-CALL node in the pattern
can only match a PHONE-CALL node in the data. Setting it to a number
greater than 0 indicates that the node can be matched to a node of another
type, e.g., a PHONE-CALL node in the pattern can be matched to other
subtypes of COMMUNICATION.

• an ontological distance multiplier, which specifies the cost of mapping a
node of a given type in the pattern to a node of another type in the data.
This factor specifies how much penalty the match will pay, for example, for
matching a PHONE-CALL node in the pattern to an EMAIL node in the
data.

• a maximum total edit distancefor allowable matches. No matches that are
above this threshold will be returned, and any partial matches that exceed
this threshold will be pruned from the system’s search.

• themaximum number of matchesfor the system to return.

analogical reasoning), because of the asymmetry between pattern and data: we are not trying
to make the pattern look like the entire data set, only a small portion of it. And while edge
replacement could be a useful construct in pattern matching, we have not yet found a need for it
in practice in our use of the system.
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Figure 2: GEM data structure

2.3 Matcher Implementation

2.3.1 Pattern Representation Language: GEM

To represent patterns and data to be used by the matcher, we use a direct graph rep-
resentation: GEM (Graph-Edit Model). Figure 2 graphically depicts the structure
of the GEM language.

The graph (Graph) is a collection of typed vertices (Node), and a collection of
labeled edges (Edge) relating the vertices. Each node in the graph is an instance
of a class in the ontology, or a value (e.g., a string or a number). Labels on edges
are also typed with the slots present in the ontology.

The main intent behind that representation is efficiency. It is achieved specifi-
cally by the redundancy between linking nodes and edges together. Similarly, the
“Nodes” field of a graph is implemented with a hash table.

The API to access the GEM structures allows basic operations, such as adding
and removing nodes and edges. It also permits efficient access from a node to all
the edges pointing to it or coming out it, and efficient access from an edge to its
adjacent nodes.

In addition, GEM can represent hierarchical graphs with the fields “Subgraphs”
and “Interface-nodes” of the Graph element. Figure 3 is an example of the use of
GEM to represent subgraphs.

Relations to other LAW representations The GEM representation is intimately
linked with other representations that exist in LAW, not only PatternML but also
the ontological representation and EDB.
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Figure 3: Example of hierarchical patterns

With respect to the ontology, nodes correspond to instances of classes. It is
worth noting that each node has the complete hierarchy of classes of the instances
represented in the “Classes” field of the node. Edges represent slots; more pre-
cisely each edge represents one particular slot value of an instance. Since we
are representing relationships, most of the values are instances themselves, but
they can also be numerical values, or strings. In these latter cases, they are still
represented by nodes in GEM.

With respect to the EDB schema, basically, entities are represented as nodes
and links as edges. There are few attributes in the EDB schema. They are repre-
sented as edges, and their values are represented as nodes of the class “Value.” It
allows a good homogeneity of the structures that compose the graph. One draw-
back of the approach is that it can lead to huge graphs that would be difficult to
manage.

Data representation Since the principal aim of GEM is to match pattern and
data, the representation of data is almost identical.

The representation of data is also based on GEM. The main addition is that the
“Value” field will always be filled by the instance of the node in the data.

2.3.2 Matching Algorithm

LAW’s current approach to finding the closest matches to the pattern in the data is
based on A* search [22]. A state in the search is a partial match—a mapping be-
tween a subset of the pattern nodes and data nodes, a mapping between a subset of
the pattern links and data links, a set of unmapped nodes, a set of unmapped links,
and a cost of the mappings so far. The cost is the sum of the delete costs of the
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unmapped nodes and link, and replacement cost of the node and link mappings,
as described above.

LAW generates start states for the search by selecting the node in the pattern
with the fewest legal mappings in the data and creating a partial match for those
mappings. It expands a partial match by selecting an unexplored node mapping
(PatternNode,DataNode) and generating new mappings for each link adjacent
to PatternNode to every mappable link adjacent toDataNode. When a pair of
links is mapped, the nodes on the other ends of those links are mapped as well.

The search selects as the next state to expand the one with the minimum worst-
case cost—that is, the cost of the mappings so far plus the cost of deleting all un-
explored nodes and links in the pattern. Since the cost of deleting all unexplored
nodes is guaranteed to be an upper bound on the eventual cost of any extension
to that partial mapping, this selection heuristic meets A*’s admissibility criterion,
and the search is guaranteed to find the lowest-cost solution. The search prunes
any partial match that cannot possibly have a lower cost than the bestn matches
found so far, wheren is the maximum number of matches the user wants to see, as
well as any that cannot possibly have a lower cost than the pattern’s maximum al-
lowable cost. In addition, at the end of the process LAW prunes any mappings that
aresubsumedby other discovered mappings. A mappingA subsumes a mapping
B if MappedEntities(A) ⊆ MappedEntities(B), that is, if they differ only in
thatB has more node and link deletions thanA.

The search process is designed to find a good set of pattern matches quickly,
and then use those existing matches to prune the remainder of the search. One
key asset of the approach is that it is ananytimealgorithm: at any point during the
process the algorithm can return the set of matches it has found already, and that
set of matches will monotonically improve as the process continues.

Figure 4 shows the benefit of different aspects of the approach. The top line
shows the amount of effort it takes to match data sets of varying size with rela-
tively little search control. The middle line shows the performance of branch-and-
bound—that is, pruning the search as described above, but selecting the next state
to explore in depth-first order rather than a heuristic evaluation function. The bot-
tom line adds the evaluation function selection to convert the branch-and-bound
approach to A*. One thing the graph demonstrates is that the match time is not
completely determined by data set size; both the heuristic approaches were slower
in the mid-size data set than they were in the largest one. The match time will be
dependent on a large number of factors in addition to data set size, including the
size of the pattern, the number of good partial matches in the data, and the pattern-
defined maximum allowable cost of a match.
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Figure 4: Effects of heuristics in pattern search

2.4 Experimental Results

One of the key challenges for a useful intelligence tool is to scale to problems
of realistic size. For LAW, that means finding partial matches to graphical pat-
terns representing realistic scenarios in large collections of relational data. Here,
“large” may mean ten million relations or more. Since subgraph isomorphism—a
simpler version of the problem that LAW’s matcher is solving—is known to be
NP-complete, it is important to evaluate LAW’s ability to process patterns and
(especially) data sets of realistic size.

To evaluate LAW’s scalability, we ran a set of experiments measuring the ef-
fect of data set size on LAW’s match time, and the effect of various advanced
features of LAW—specifically, hierarchy and cardinality—on LAW’s match time.
The results of these experiments showed encouraging progress toward the goal of
solving realistic problems in a reasonable amount of time, and at the same time
they indicate areas of needed improvement in future work.

The experiments were designed to measure how LAW’s match time changed
as various problem characteristics were varied. We used IET’s data set generator
to create data sets of various sizes, where size is measured by number of relations
in the data. We kept the other settings of the data set generator—observability,
noise, and so on—constant and on the “easy” settings. We ran the set of experi-
ments on a small suite of patterns of various characteristics. Individual experiment
descriptions below will describe the specific patterns used. The dependent vari-

11



Figure 5: Growth of match time with data set size

ables we measured were (1) CPU time elapsed during the matching process, and
(2) the number of A* search space states examined during the matching process.
Our goal was to measure (in separate runs) both the overall impact of data set size
on LAW’s match time, and to measure the contribution of individual features of
LAW and its pattern language toward LAW’s scalability.

2.4.1 Scalability

The first experiment was designed to measure LAW’s ability to scale to data sets
of realistic size. We used LAW to match a pattern representing two cooperating
threat groups—two groups that share a member in common, each carrying out
threat activities—against data sets of sizes ranging from approximately 12,000
links to more than 240,000 links. This pattern is not the largest in our pattern
library, but it is one that we feel represents realistic computational challenges for
LAW’s algorithm.

The match time results are shown in Figure 5. LAW’s match time ranged from
just over a second for the smallest data set tested to just under three minutes for
the largest data set. While the graph is not a perfectly straight line, it does not
give us any reason to think that LAW’s match time is super-linear in the size of
the data set.

If we assume that the match time is linear in the size of the data set, we can
extrapolate from these results the time it would take LAW to match this pattern

12



Figure 6: Growth of match time with data set size, extrapolated to very large data
sets

against a very large data set that could be encountered in actual intelligence work.
Figure 6 shows the rate of growth shown in Figure 5 extended to a data set with
7,000,000 links. The number 7,000,000 was chosen based on the size of the largest
data set used in the TIA experiments for which statistics were made public—the
“AVRS with GDB Extensions data set.”5

If the linearity assumption holds, Figure 6 shows that LAW would take about
an hour and forty minutes to match this pattern in a very large, realistic data set.
Despite the fact that we envision that LAW will often be run in modes where im-
mediate response is not required (e.g., matching a set of patterns in an overnight
run), our belief is that this is too long for an information gathering tool for real-
world intelligence analysis. Our experience leads us to estimate that widespread
user acceptance would be possible only if the matching time on large data sets
is around one-tenth the estimated time shown in that graph—that is, around ten
minutes rather than one hundred. Thus, this experiment identifies a critical imme-
diate goal for our ongoing work on LAW: a further order-of-magnitude speedup
on matching realistic patterns in large data sets.

5Statistics for this data set indicated that it had only 152,000 links, but also 7.1 million at-
tributes. We base our extrapolation on the assumption that attributes would be converted to links
for matching in LAW.

13



2.4.2 Cardinality Results

The second experiment was designed to measure the extra efficiency achieved by
adding cardinality to the pattern language and matching capability. The cardinal-
ity constuct in the pattern language allows the pattern designer to impose numer-
ical constraints on the number of matches of a subgraph—for example, “three or
more meetings.” More important for efficiency, it also provides a way of grouping
results of a subgraph match and thereby controlling the combinatorial explosion
of possible matches. That is, instead of creating a separate new parent graph
match for each subgraph match, the cardinality construct allows LAW to group all
matches to a subgraph under a single parent graph match.

In these experiments, we compared the resources used—measured by search
space size and time consumed—by the LAW matcher in matching two patterns:
(1) a hierarchical graph with cardinality constraints on its subgraphs, and (2) the
best “flat” approximation of graph (1). The best flat approximation was deter-
mined by insertingN copies of each subgraph into the parent graph, whereN is
the value of the cardinality constraint on that subgraph.

It is important to note that the flat approximation (2) is truly an approximation
to the hierarchical graph (1), and isnot equivalent, either semantically or com-
putationally. In other words, the fact that we achieved efficiency gains by using
hierarchical graphs is not unexpected, and does not represent a breakthrough in
complexity theory. Rather, these experiments measure the scalability benefit of
giving the user the extra expressive power to represent what he wants. Situation
descriptions that include “N or more” occurrences of an event are common, both
in the EELD Challenge Problem domains and in the real world. By giving the user
the ability to represent such situations, and by giving the matcher the capability of
matching those situations efficiently, we expect to see improved efficiency com-
pared to matching inexact approximations.

Figure 7 shows the efficiency gain from hierarchy and cardinality on one pat-
tern, representing a threat group with two or more members each acquiring a
threatening resource. The hierarchical pattern contained a single subgraph with
a “2 or more” cardinality constraint. The graphs show the change in search effi-
ciency as the data set size grows, with the smallest data set size containing around
15,000 links and the largest containing around 75,000. Figure 7a) measures the
number of search states explored, which was reduced by a factor of more than
three using hierarchical graphs on the largest data set. Even more encouraging
is the amount of time saved by hierarchical patterns, shown in Figure 7b. Hi-
erarchical patterns with cardinality improved match time by over two orders of
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(a) (b)

Figure 7: Improved efficiency from hierarchy and cardinality on “Group Gets
Resources for Mode” pattern, measured by (a) amount of search space explored
and (b) match time

magnitude—from 630 seconds to six.
Figure 8 shows the same measurements for another pattern (and its flat approx-

imation). This pattern represents hub-and-spoke communication—two or more
phone calls from members of a threat group to another “hub” group member. Like
the “Group Gets Resources for Mode” pattern of Figure 7, the hierarchical version
of the hub-and-spoke pattern contains a single subgraph with a “2 or more” car-
dinality constraint. The efficiency gain with this pattern was even more dramatic
than that shown in Figure 7. Figure 8(a) shows a search space reduction on this
pattern of over an order of magnitude—from 180,000 states to 16,000—and Fig-
ure 8(b) shows a match time reduction of almost three orders of magnitude—from
over 1,700 seconds to less than three.

The dramatic difference between the search space reduction and the search
time reduction—the (a) and (b) graphs in each figure—is an interesting phe-
nomenon, and one for which we do not have a definitive explanation. Our current
hypothesis is as follows. State expansion in LAW’s A* search involves copying
the parent state. When the patterns are hierarchical, the pattern representation is
more compact—since each subgraph is represented in a parent graph as only a
pointer, rather than a complete list of all nodes and links in the subgraph—and
therefore the copying operations per state expanded are smaller.
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(a) (b)

Figure 8: Improved efficiency from hierarchy and cardinality on “Hub-and-
Spoke” pattern, measured by (a) the amount of search space explored and (b)
match time

2.4.3 Caching Results

The final set of experiments measures the value of caching subgraph matches in
hierarchical pattern matching. We designed a mechanism in the LAW matcher
that caches subgraph match results during a match of a parent graph. Subgraph
matches are cached indexed by

• The subgraph being matched, and

• The mappings of the subgraph’s interface nodes (see Section 2.1).

Once a subgraphS with a given set of interface node mappings< m1, . . . ,mn >
is matched, the results for any future attempts to matchS with < m1, . . . ,mn >
will be retrieved and returned from the cache.

Our hypothesis was that caching would be especially useful for patterns that
contain multiple copies of the same subpattern. Such a pattern is shown in Figure
9. This pattern represents two different Threat Groups, related through a common
member, each acquiring a threatening resource. Matching this graph will require
multiple attempts to match the AcquiringThreateningResource subgraph for each
Person, and caching will eliminate all but one of those attempts.
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Figure 9: “Two Related Groups Acquiring Threat Resources” pattern

Figure 10: Effect of caching as data set size grows on “Two Related Groups Ac-
quiring Threat Resources” pattern
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Figure 11: Effect of caching as data set size grows on “Group Gets Resources for
Mode” pattern

As we expected, Figure 10 reduces match time dramatically for Figure 9’s
pattern. For the largest data set tested, caching reduced match time by an order of
magnitude, from 1,800 seconds to 180, and the time savings were even greater for
some smaller data sets.

However, we did not expect the results shown in Figure 11. The pattern that
generated those results—“Group Gets Resources For Mode”—is a pattern with
a single subpattern, and one for which we expected little or no repetition. Our
hypothesis was that caching would have little impact; in fact, we thought it would
be possible that the overhead associated with caching could cause the runs with
caching to be slower than the ones without. Instead, Figure 11 shows that caching
did have a significant positive effect even for this pattern, cutting match time
roughly in half for all data set sizes tested.

Figure 12 summarizes the caching results, showing the benefit of caching for
all three patterns tested on the largest data set tested.

2.5 Metrics for Approximate Pattern Matching

Much of the pattern-matching work within the LAW implementation is grounded
in a theoretical model of approximate pattern matching. This model is described
in detail in the Appendix, and we provide an overview of it here.
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(a) (b) (c)

Figure 12: Summary of caching results: benefit of caching on largest data set for
(a) “Group Gets Resources for Mode”, (b) “Hub-and-spoke Communication”, and
(c) “Two Related Groups Acquiring Threat Resources” patterns
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The complex patterns considered by the matching techniques discussed in this
report may be regarded, from a logical perspective, as axioms that specify atheory
while the objects being sought aremodelsof that theory. Informally, the database
may be thought of as a collection of objects that are linked by various predefined
relations. At a more formal level, facts describing the existence of these objects
and their relationships are expressed as the conjunction of the members of a set
of instantiated logical predicates. Patterns may also be conceived in terms of
logic constructs, requiring the existence within the database of certain instances
of objects and that of links, or relationships, between them.

In the theory’s treatment of patterns, we generalize the notion of a pattern by
regarding them as specification ofelastic constraintson potential models. This
type of specification, which is familiar in information-retrieval applications, per-
mits ranking of instances of data structures by their degree of matching with the
ideal conditions. For example, a requirement to match the pattern “Person P is
a Southern European who breeds attack dogs” might be matched, albeit not per-
fectly, by an object of the typePerson who was born inCentral France (which is
close to and overlapsSouthern Europe) and whokeeps (but it is unclear whether
or not hebreeds) wolves.

In this extended view, patterns do not express strict requirements that are either
met or not met. Rather, patterns should be regarded as procedures that rank the
adequacy of alternative variable-to-object assignments as potential solutions of a
database-retrieval problem. Correspondingly, the values of properties of objects
in databases (e.g.,Southern European) and the nature of the properties themselves
(e.g.,breeds) should be regarded as elastic descriptions that may be met to var-
ious degrees. Each possible instantiation matches the pattern to some degree,
expressed by a number between0 and1 that measures the extent to which such an
instance matches the pattern specification. Pattern instances that strictly match, in
the logical sense, the pattern specifications have a degree of matching equal to1,
while semantically unrelated instantiations—“unrelated” in a sense that we will
formalize in the Appendix—have a degree of matching equal to zero.

Patterns may be regarded, therefore, as mechanisms to measure thedistance,
similarity, or resemblanceof potential solutions of a matching problem to a pro-
totypical set ofideal or perfectmatches. This similarity function, which reflects
the semantics of the specific problem being considered, is the basis for the defini-
tion of numerical measures ofdegree of matching. This conceptualization of the
pattern-matching problem suggests that it may be treated as a generalized logical
program, that is, as a procedure to search a space of potential solutions and to
rank their suitability [36, 18], which extends the theorem-proving approaches of
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logical programming [13].
The theory defines a degree-of-matching function in terms of thedegree of

admissibility, or adequacy, of the modifications required to transform a database
into a modified counterpart that strictly matches the pattern. Such a best match
may be informally described as having the largest admissibility value (i.e., lower
transformation cost) among all transformations leading to transformed databases
that match the pattern from a classical-logic viewpoint. Database transformations
are defined as the composition of a sequence of certainbasic edit operations. Each
edit operation is associated with a numerical value gauging its admissibility. The
admissibility of a particular transformation is then defined as a function of the
admissibility of its component edits.

The theory’s metrics determine the extent to which a database matches the
specifications of a pattern, and are based on semantics provided by knowledge
structures such as ontologies. These metrics are intended to be employed in
connection with graph-based approaches [41, 8, 48] to database representation.
Graph-editing techniques provide a useful framework to describe a variety of com-
plex objects while permitting their comparison in terms of the extent (or cost) of
the modifications that are required to transform a graph-based representation of
one object into another. These techniques have considerable generality and may
be applied to a wide variety of problems. In each application, however, it is nec-
essary that the functions employed to estimate the admissibility of graph trans-
formations reflect the particular meaning attached to each editing operation. The
model detailed in the Appendix is devoted to the derivation, from the perspective
provided by a combination of logical and metric perspectives, of specific admis-
sibility measures, calleddatabase-editing metrics, applicable to pattern matching
in databases.

3 Example and Interface

This section has two purposes. First, it provides an example of the user’s interac-
tion with LAW—and especially the LAW pattern matcher described in the previ-
ous section—through screen shots of the system. Second, it discusses the design
of LAW’s user interface, which is based on the common pattern framework and
Web services architecture described in Section 4.
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3.1 Interface Design

LAW’s interface runs primarily through the Web. The Web-based implementation
offers two main advantages. First, any connected computer with a browser can
access it without the need for an error prone installation cycle. Second, it cuts
to zero the time from release to deployment, and it allows concerns of the users
to be answered, implemented, and delivered much more quickly. On the other
hand, the disadvantage of a browser-based interface is that there is only so much
that can be done using HTML and JavaScript. Highly interactive HTML inter-
faces are either kludgy and inefficient or impossibly slow. For that reason, certain
highly interactive pieces of the LAW interface—the pattern editor in particular—
are implemented as local applications that connect to the original server using
Web services.

Given the pattern-matching task described above, a user interface must provide
a way to make sense of the structure and amount of the information available. It
must also provide a pattern editor that permits the creation of patterns in terms
of the data. The most important component, the pattern matcher has limited user
interface. When matches are extracted, they must be shown in a drillable way that
is consistent both with the views of the data and the pattern construction.

3.1.1 Visualization

Visualization in LAW can be divided into three areas: patterns, the data to which
the patterns are matched, and the ontological concepts of which the patterns and
the data are composed.

As described earlier, patterns contain two elements: a graph that represents
the prototype situation, and the edit distance parameters that represent the allow-
able deviations from the prototype. LAW’s presentation of patterns displays both
elements. Figure 13 shows LAW’s display of a pattern. The display shows the ob-
jects and relations of the pattern (the nodes and links) as well as the edit distance
parameters (encoded in colors of the nodes and links).

Ontology management is a well-studied problem [30]. Since ontologies are
not a primary focus of LAW, its ontology exploration and editing capabilities are
limited. Figure 14 shows the user exploring the ontology via LAW’s hierarchical
browser. Although the range of things that can be done to the ontology is re-
stricted, our tool can import DAML [23] or CycL [15] ontologies, so modification
of these is permitted by any tool that is able to export in those formats.

The last area, visualization of primary data, did not play an important role in
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Figure 13: LAW’s display of the Murder-for-Hire pattern
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Figure 14: Ontology browsing
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Figure 15: SHAKEN interface

our work on this project.

3.1.2 Pattern Editing

LAW’s development has been guided by our view that pattern matching should be
an interactive task, where patterns will be continuously refined during an iterative
matching process. Some patterns will even have to be created either from scratch
(i.e., directly from concepts in the ontology) or from other patterns.

The interactive nature of the pattern-matching process requires that the user
be able to revise his thinking quickly, which in turn requires the ability to make
fast modifications to the graph. A browser is ill-suited for this type of interaction.
In the current version of LAW, we are using a knowledge acquisition tool called
Shaken [46] for the construction of patterns. Figure 15 shows the user editing a
pattern in Shaken.

The requirements for a pattern editor include (1) the ability to edit and/or in-
corporate existing patterns coming from other sources, (2) the ability to build
patterns from concepts in the ontology, and (3) the ability to handle a wide range
of pattern sizes, ranging up to thousands of nodes. The pattern editor is basi-

25



cally a graph editor, but with a constrained set of possible operations. It is also
component-based, which means that patterns can be made of other patterns. The
main operations that can be performed on a pattern are the addition of a node, the
connection of two nodes, and the merging of two nodes.

3.1.3 Pattern Match Visualization

The final piece of the interface is the pattern match (result) visualization. Just as
we emphasized how important it is that we can observe the data and the patterns
under the same framework, the same is true for the results. This is important
so that the relationship between the pattern and the results instantiating it is self
evident. If a mental mapping between one and the other is difficult, then the ability
to modify the pattern as we look at the results is diminished.

When a request for matches is initiated, the server will asynchronously start
the search and inform the user of it. When the results are available, the ones that
meet the user’s criteria are presented, ordered best to worst. The images of the
results are small replicas of the graph used to describe the pattern. The nodes
of the result image are colored to display the degree of accuracy obtained in the
match. Figure 16 shows the results of the match of Figure 13’s pattern.

Although not implemented currently, the idea is that these matches can be
reentered into the system as data, so that they can be revisited later. This scenario
makes sense in the case of streaming data, where the system does not yet know
if more evidence is going to become available. There must be a big portion of
the system devoted to what we call “hypothesis management”—that is, storing,
revising and comparing past results. The current system offers a good explanation
of why a match coincides with the pattern offered, by assigning scores to all the
nodes and relationships.

4 Architecture

While the LAW pattern matcher described in the previous sections provides a
powerful and flexible mechanism for finding partial matches to patterns, it cannot
possibly cover all the pattern-matching criteria an analyst could have. There are
many tools under development, general and specialized, that support the many
complementary data exploration requirements of the intelligence community. In
a given search session, an analyst may want to combine results from an approx-
imate match to a general scenario (as retrieved, e.g., by the LAW matcher just
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Figure 16: Results list page

described), a general probabilistic reasoning engine (e.g., [44]), and a specialized
tool for determining group membership (e.g., [24]).

We have developed and implemented an architecture for LAW that supports
integration of multiple pattern-matching tools. It includes a language for sharing
patterns, and a Web services architecture that makes integration straightforward.
The LAW user interface allows a user to interact with these tools through a com-
mon framework. Right now, the user must select and task the tools manually, but
our aim for the future is to have the system provide support for tasking of tools
through LAW’s Control component.

4.1 High-level Architecture

LAW is architected as a Web application, made up of a number of Web service
components. At the heart of LAW is a knowledge base server, with an in-built
Web server. Data for this knowledge base server can reside in either a database or
a flat file. The client side of LAW is ephemerally generated Web pages, encoded in
HTML, Javascript and embedded Java applets, with the client being any standard
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modern Web browser.
This thin client, Web server architecture had previously been used for a suc-

cessfully fielded collaborative structured argumentation application, SEAS [25].
The adoption of a Web browser as the client, removed the need to install and main-
tain client software in end-user organizations. For LAW, we decided to enhance
this architecture, using a Web service model. Our driver for this was that part-
ner companies were simultaneously developing applications, which we wanted to
make available to the LAW user through its GUI. Likewise, several of the LAW
components were of general value to external partners, outside of the LAW frame-
work. Given that we were not able to state at the outset all the different ways in
which we and other partners would integrate the various components into larger
systems, Web services offered an ideal way of providing a lightweight, flexible
means of integration. The idea was that during the development of the various
components, and as our understanding of the domain was refined, we would be
able to experiment with different configurations of Web services to provide differ-
ent, complementary, end-user solutions.

From a user’s perspective, the configuration/location of the underlying ser-
vices, such as pattern matching, are not visible. Instead the user is presented with
an interface, which can hide all the integration details.

Figure 17 depicts the current LAW architecture. In the current architecture,
LAW can be viewed as having three internal components:

• the control component that is responsible for coordinating the tasks between
the user input (via UI) and the other (internal and external) components.

• the UI component, that is the user interfaces that are presented to a user to
request pattern matches and to view the results of matches

• the Pattern Match component

LAW itself contains a Web server, which is used to communicate between
the different internal components, as well as external components, with the mes-
sages being encoded in XML, conforming to defined schema (PatternML, Hy-
pothesisML and ControlML). External components are all intended to be tasked
using SOAP, although currently some components are still tasked through custom
interfaces.

The LAW server sits on top of SRI’s knowledge base server, with communi-
cation between LAW and the server via OKBC. The knowledge base server con-
tains the domain ontologies used by the evidence data sets that are to be matched
against.
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Figure 17: LAW architecture
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Initially, LAW was implemented with the evidence data sets to be matched
also contained within LAW’s knowledge base server. This was done mainly for
efficiency, as a placeholder while the EELD program was developing a database
schema for evidence (the EDB schema). Since the EDB schema was developed,
LAW now interfaces directly via SQL with EELD evidence databases, stored in a
separate mySQL relational database.

The LAW pattern editor is still a separate application from LAW. Originally
developed using SRI’s Shaken editor [46], LAW’s current pattern editor was rewrit-
ten as a pure Java application. The pattern editor uses the DAML form of the
EELD ontology as input, and produces patterns as output in two formats—PatternML
and ePSL (the program-wide pattern specification language developed in 2003).

4.2 SOAP

We chose to adopt SOAP (Simple Object Access Protocol—www.w3.org/TR/SOAP
) as the standard communication protocol between LAW’s internal and external
Web services. SOAP is a lightweight protocol for exchange of information in a
decentralized, distributed environment. It is an XML based protocol, which is
neutral about the actual transport mechanism. This means that HTTP, SMTP, raw
TCP, an instant messaging protocol like Jabber, and so on, could potentially be
used for message transport. For LAW we decided to adopt HTTP as the commu-
nication protocol. LAW uses SOAP to enable remote procedure calling (RPC),
where an RPC call maps naturally to an HTTP request and an RPC response maps
to an HTTP response. SOAP was also attractive from an architectural standpoint
in that it does not require that a message be sent from a client to a server in a sin-
gle “hop.” The SOAP specification defines the notion of intermediaries—nodes
that a message passes through on its way to its final destination. Intermediaries
can be used to “virtualize” physical network topology so that messages can be
sent to Web services using whatever path and whatever combination of transport
protocols is most appropriate. This last capability facilitates our vision for the
LAW architecture as a federated collection of services that communicate via net-
works to coordinate their search for pattern matches over distributed data sources,
in service of a community of intelligence analysts.
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5 Integration with Other Pattern-matching Compo-
nents: TIEs

A series of technology integration experiments (TIEs) was conducted over the
course of the EELD program, with the aim of evaluating how an integrated EELD
system performs on a challenge problem data set. SRI’s LAW tool took part as
a component in several of these experiments. Details of these experiments are
given below. The common element in all the experiments was the adoption of a
lightweight integration model, using Web services and XML schemas to commu-
nicate between the different components. The schemas used in these experiments
are first described, followed by the details of the experiments.

5.1 XML Schema

To allow communication between various components internal to LAW and ex-
ternal component Web services, there was a need to design XML schemas for
the content of the SOAP messages, so that all components could understand the
syntax of the content, and map the content to their internal representations.

We adopted a layered approach to schema design, where the core is Pat-
ternML, a schema to describe template domain patterns [21]. PatternML was
designed to have two main uses: as an interchange language between pattern edi-
tors/visualizers, and as an input format to pattern-matching components. Patterns
defined using PatternML make reference to existing ontologies for domain con-
cepts.

Layered on top of PatternML is the HypothesisML schema, which was de-
signed to be a common output format for pattern match components and as an in-
put format for hypothesis visualizer or hypothesis management components [20].
HypothesisML describes the match between a PatternML pattern and a particular
evidence data set.

Layered on top of both of these schemas was the ControlML schema [19],
which was designed to describe intended task control information. ControlML
allows one component to describe what it wants other components to do, to-
gether with various control parameters, and allows PatternML or HypothesisML
as content (to describe pattern templates or hypothesized pattern match(es), re-
spectively).
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Figure 18: LAW’s role in TIE1

5.2 TIE Implementations

5.2.1 2002: TIE1

The LAW server provided visualization services for the TIE1 experiment led by
Alphatech. The visualizations were of patterns and hypotheses. Alphatech’s
CADRE system interoperated with SRI’s LAW server via defined APIs. Fig-
ure 18 shows the experiment architecture. The goal of the experiment was to
demonstrate how a Web service architecture could support the rapid integration of
components from different contractors, to provide services currently unavailable
in a tool (in this case visualization services). By defining and agreeing on XML
schema for patterns and hypotheses, and using standards-based communication
protocols (http in this case), a service was quickly developed. ControlML and
SOAP services were not developed in time for the experiment, so we used http
POST to communicate between CADRE and LAW.

The experiment consisted of two parts:

1. CADRE sent an http message to LAW to display a PatternML file (pattern
file sent along with http message). LAW returned an HTML page displaying
a graphical representation of the pattern.
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2. CADRE sent an http message to LAW to display a HypothesisML file (hy-
pothesis file sent along with http message). LAW returned an HTML page
displaying a graphical representation of the hypothesis.

The experiment required CADRE to provide a translator to translate from its
own internal pattern and hypothesis representations to the common pattern rep-
resentations PatternML and HypothesisML. CADRE also required the ability to
send requests, using agreed control messages for the experiment. LAW, too, re-
quired a translator from PatternML and HypothesisML into LAW’s own internal
pattern and hypothesis representations. LAW already possessed the API to pro-
duce HTML pages that visually displayed the content of the PatternML and Hy-
pothesisML files. The experiment was a success, in that Alphatech was able to
demonstrate accessing the LAW server to provide visualization services.

5.2.2 2002: TIE3

The domain for the 2002 challenge problem was Russian Contract Killing (RCK).
A series of artificially generated data sets were provided by IET, which contained
fictitious data from different data sources, such as newspapers, police reports,
direct observations, telephone records, and bank records. The goal of the eval-
uation was to identify those murders that were contract killings, and to identify
the people involved and the details of the murder (communication events, money
transferred, location, and business involved). The output from the TIE was scored
against ground truth to evaluate performance.

The architecture of TIE3 is given in Figure 19. LAW acted as the hub of the
TIE, providing user interaction, control (component tasking) pattern matching and
hypothesis management services. Other contractor components provided services
such as pattern matching (Alphatech, CMU, CHI) and accessing external data
sources (USC/Fetch).

Like in TIE1, XML schemas were used as the interfaces between the different
components. Again, due to time constraints, all participants did not use SOAP and
ControlML. CMU’s group detection algorithm (GDA) was called directly from
LAW’s pattern matcher, using GDA’s C-based API. USC/Fetch’s city location
service was called from LAW’s pattern matcher using its HTTP POST interface.
Alphatech and CHI’s pattern matchers were called using SOAP and ControlML
messages. To ease integration, the PatternML version of the RCK pattern was not
actually sent from LAW to the pattern matchers. Instead, an agreed pattern name
was passed, and each individual pattern matcher component used its own internal
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Figure 19: TIE3 architecture

representation of the RCK pattern for the matching. However, both Alphatech
and CHI did return HypothesisML hypotheses back to SRI, which required them
to develop translators from their internal hypothesis representations to Hypothe-
sisML. SRI’s LAW component provided the client interface, allowing a user to
choose a data set to match against and the particular pattern match component the
user wanted to make the match (including LAW’s own pattern matcher).

Hypothesis merging was not attempted in TIE3. Instead, TIE3 returned mul-
tiple results for each data set, for those cases where the different pattern matchers
were able to find some matches. Before returning results for TIE3 to the eval-
uation team for scoring, LAW translated the results from HypothesisML to the
evaluation team’s own XML-based result schema.

The integration experiment was a success, in that it demonstrated how using
a standards-based XML schema and communication protocols allowed diverse
components to integrate in a short time.

5.2.3 2003: oddTIE

The domain for the 2003 challenge problem was changed to be an abstract threat
scenario domain, where members of threat groups apply capabilities and acquire
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resources necessary to carry out threat events. As for the 2002 challenge problem,
a series of artificially generated data sets was provided by IET, which contained
fictitious data from different data sources, primarily telephone and purchase trans-
action data. The data sets varied along several different domain dimensions, like
size, data observability, corruption of data, and connectivity. The goal of the eval-
uation was to identify the threat groups in the data set, their members, and the
threat events that they carried out. The output from the TIE was scored against
ground truth to evaluate performance.

SRI’s LAW system was part of the oddTIE, which was an outgrowth of TIE3,
expanded to contain pattern learning (PL) technologies, since the 2003 evaluation
was to be of combined link discovery (LD) and PL technologies. OddTIE was
characterized through its use of specialized LD components for group and event
detection/refinement, and by its use of multiple threads to exploit the strengths
of different components. The results were then merged using hypothesis man-
agement algorithms to perform smart merging, hence improving what any single
approach could have achieved by itself. As in TIE3, Web-based integration of
components was used, and SRI’s LAW provided the component tasking/process
control that made the integration threads work. PL technologies were used in three
different ways: 1) to perform traditional offline pattern learning, which was then
utilized (either directly or indirectly) by LD components; 2) to provide specialized
online matching; and 3) to provide online hypothesis ratings.

The overall architecture for oddTIE is given in Figure 20. This diagram
does not show the finer detail of the pattern matching or hypothesis management
tasks. ISI/USC, UMass, NYU and Stanford all contributed to the group detec-
tion/refinement part of pattern matching. Alphatech, SRI, and CHI all contributed
to the event detection/refinement part of pattern matching. NRL provided the rat-
ing and selection functions of hypothesis management.

The oddTIE results were mixed. Overall in the EELD program, oddTIE pro-
duced the best group detection (as measured by evaluation score) of any TIE, with
precision and recall scores of 99% and 74%, respectively. However, the results
were to us modest, but we were pleased that the technologies did do best on the
harder data sets. In general we believe we were too parsimonious in our use of
secondary data, and data observability affected group detection much more than
perhaps was intended by the evaluation team. OddTIE’s event detection was not
particularly effective, and our subsequent analysis has shown that we over-filtered
hypotheses and requested too little data to actually detect many of the relevant
threat events. Again, we erred on high precision for events (97%) but had poor
recall (57%). Insufficient time prior to the evaluation to test out the integrated
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Figure 20: oddTIE architecture

architecture led to this situation. Post-evaluation performance boundary testing
demonstrated that loosening the secondary data access restraints significantly im-
proved recall, though naturally precision decreased as a consequence.

Another consequence of the compressed timescales for testing was that multi-
ple passes through the architecture, utilizing SRI’s process control infrastructure,
were not attempted. It is felt that multiple passes would have significantly im-
proved results.

One surprising result was how little value PL added to the results. This oc-
curred partly because pattern learning was able to identify useful subpatterns in
the evaluation data set answer keys, but this did not extend to discovering very
useful patterns in the actual data sets themselves. The issue of whether this was a
feature of the technologies involved or a characteristic of the evaluation data sets
used is still unresolved.

6 Control

LAW is a mixed-initiative, multi-user system. The objective is to allow the ana-
lyst to work effectively within the context of a particular scenario of interest. Our
original vision of LAW included a central role for a control component that had
the ability to exploit structural, semantic, domain, and user-specified information
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within a pattern to control the search process, and would task a variety of link
discovery (LD) tools and algorithms, exploiting their strengths and compensating
for their weaknesses. Our control vision places an emphasis on enabling alter-
nate modes of operation, supporting a user as he develops a pattern for a new
scenario or alerting the user to the results of ongoing recurrent queries. During
the course of development, we found that the control technology was less critical
for the program’s and project’s goals than other needs, so LAW’s current control
component is much simpler than the one we proposed, and the more sophisticated
control work remains for the future. Nevertheless, we present here several of the
most important issues we have identified in the design of a sophisticated control
component for link analysis.

6.1 Research Challenges

The search control problem is combinatorially complex. The complexity will de-
pend upon the size of the pattern, the degree of connectedness of the pattern, and
the number of disjunctions within the pattern, to name but a few of the relevant
dimensions. Exploiting knowledge about a pattern to direct the search is a possi-
ble approach. What knowledge is useful, how we represent it, and finally when
we apply it are all outstanding questions. Modeling and understanding the ca-
pabilities and performance characteristics of the variety of algorithms and tools
available for matching patterns and providing secondary source information is
nontrivial. Finally, there exists a complex process management problem with the
control flow being driven both by user requests (goal-driven) and by intermediate
results or derived requests for additional information, perhaps from a secondary
source (data-driven).

The LAW team has focused its effort initially on the first two challenges, and
this report describes the approaches taken so far and future directions.

6.2 Search Control: exploiting knowledge about the pattern

Consider the search control problem for one complex pattern. It is possible to
use an LD tool, for example the LAW Matcher, to match the complete pattern.
However, if the pattern is particularly large or has areas of sparsely connected
nodes it may be inefficient or ineffective. LD tools will have different strengths;
perhaps one excels at matching temporally rich patterns and another at matching
small tightly connected patterns. Finally, the search process may be recursive
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either because leaf nodes in a pattern may be expandable, or because a partial
result may spawn further information gathering.

These observations have implications in the flow of information during search.
For example, the search control component may be faced with a variety of choices:

• To send a whole pattern to one or more tools and compare the results

• To send the pattern to one tool and pass its results in the form of partial
matches to a second tool and so on

• To decompose the pattern and send portions to different tools depending on
the capability of the tool, and merging results, perhaps recursively

The selection of the appropriate tool is discussed in Section 6.3. Here we
discuss technologies necessary to facilitate these control options.

6.3 Embedded Control Information

Our initial work in this area has been to allow the user to specify node and link ne-
cessity or desirability to guide an individual matcher’s algorithm. We will extend
this notion to allow a user to tag hierarchical subpatterns or clusters with infor-
mation about its importance and thus value as an alert, or the sequence in which
the pattern should be matched. For example, portions of a pattern may be seen
as early indicators for the more complex scenario. This work is supported by our
development of a pattern formalism that supports hierarchy and disjunction.

6.4 Strategies to Exploit Structure of a Pattern

The next step is to exploit the hierarchical nature of the pattern formalism auto-
matically, and to identify subpattern types that can be paired with LD tools that
can match them effectively. Similarly, the automated clustering of patterns may
eventually prove useful. Clusters of tightly connected graphs can be matched, and
then specialized tools could be used to search for the connections between the
resulting disjointed hypotheses.

The LAW approach combines the highly reactive techniques employed in in-
telligent process control domains with the more accountable and systematic ap-
proach to business management provided by the field of workflow management
systems. Structured management of search strategies can provide benefits in
several ways. Articulation of explicit search strategies can help to standardize
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methodology, thus reducing the likelihood of introduced errors. Explicitly rep-
resented search strategies can be tuned to improve efficiency and effectiveness.
Automated tools for process management, and thus search control, hold promise
for deeper insight into current and planned operations, through the provision of
timely updates on progress and status. Such enriched understanding of operating
processes will lead to better-informed and more principled decision making by
analysts.

At the heart of the SRI controller lies a library of templates that encode explicit
strategies for controlling the matching of patterns over data sources, [27]. These
templates are represented as explicit sets of tasks or activities to be undertaken,
or more abstractly as collections of constraints on allowed activity. This work is
built on reactive control and process management technologies [5, 28, 29].

Although much of this work has still to be implemented, we now have a pattern
representation format to support these ideas and the underlying process manage-
ment tools in place. Initial experiments will allow the information professional to
specify clusters, hierarchical subpatterns, and semantic control strategies to drive
the search.

6.5 Tasking

The tasking of LD tools requires two main technical components: (1) the mod-
elling and representation of capability, and (2) the mechanisms to support Web-
based tasking.

We apply work on matching the requirements of some service with the tools
to provide that service [12, 1]. LAW takes a semantic-based approach to the pro-
vision of Web services and tasking of those services.

“..software agents should be able to discover, invoke, compose and
monitor Web resources offering particular services and having partic-
ular properties.” [2]

In order to take this approach it is necessary to understand and model the ca-
pabilities and properties of a particular tool. LAW provides the semantic tasking
necessary to support this approach. As LD tools become available we will model
the individual services they provide by using a methodology developed for the
workflow management system SWIM [5]. The characteristics to be modeled in-
clude the service itself, data over which the service is applicable, strengths and
weaknesses according to pattern structure and pattern semantics, performance,
and response time.
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It is crucial that any system to coordinate and control multiple pattern match-
ing for link discovery be flexible and reactive, and provide the accountability and
proactive aids to decision making required by the analysts. The current imple-
mentation supports the underlying process control. A user can specify a query
to match a pattern and the controller will select and task an appropriate tool to
perform the match. LAW can handle multiple queries and multiple users, and it
can initiate repetitive queries and manage the hypothesized results.
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A Appendix: Metrics for Approximate Pattern Match-
ing

A.1 Introduction to Theory

A.1.1 Approximate Pattern Matching

The complex patterns considered by the matching techniques discussed in this
report may be regarded, from a logical perspective, as axioms that specify atheory
while the objects being sought aremodelsof that theory. Informally, the database
may be thought of as a collection of objects that are linked by various predefined
relations. At a more formal level, facts describing the existence of these objects
and their relationships are expressed as the conjunction of the members of a set of
instantiated logical predicates such as

Person( Person-1),
Event( Event-3),
Participated( Person-1, Event-3),
Employment( Person-1, Company-2, Position-9).

Correspondingly, patterns may also be conceived in terms of logic constructs,
requiring the existence within the database of certain instances of objects and that
of links, or relationships, between them. Typically, a pattern will correspond to a
closed first-order-logic expression, such as

∃ x, y, z, . . . Person (x) ∧ Person (y) ∧ Event (z) ∧ . . .
. . . ∧Participated (x, y) ∧ Participated (x, z) ∧ . . .

From such a logical perspective, the pattern-matching problem may be regarded
as that of finding a correspondence between the variablesx, y, z, . . . and selected
database objects (i.e.,variable bindings) such that the resulting instantiated pat-
tern predicates are, indeed, among the assertions contained in the database. We
may also think of the specification of this correspondence between variables and
objects as a constructive proof that the database implies the pattern. This perspec-
tive is the basis for a number of logical programming languages and of logical
approaches to database representation and manipulation [13].

In our treatment of patterns, we generalize this notion of pattern by regarding
them as specification ofelastic constraintson potential models. This type of spec-
ification, which is familiar in information-retrieval applications, permits ranking
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instances of data structures by their degree of matching with the ideal conditions.
For example, a requirement to match the pattern “Person P is a Southern Euro-
pean whobreeds attack dogs” might be matched, albeit not perfectly, by an object
of the typePerson who was born inCentral France (which is close to and over-
lapsSouthern Europe) and whokeeps (but it is unclear whether or not hebreeds)
wolves.

In this extended view, patterns do not express strict requirements that are either
met or not met. Rather, patterns should be regarded as procedures that rank the
adequacy of alternative variable-to-object assignments as potential solutions of a
database-retrieval problem. Correspondingly, the values of properties of objects
in databases (e.g.,Southern European) and the nature of the properties themselves
(e.g.,breeds), should be regarded as elastic descriptions that may be met to var-
ious degrees. Each possible instantiation matches the pattern to some degree,
expressed by a number between0 and1 that measures the extent to which such an
instance matches the pattern specification. Pattern instances that strictly match, in
the logical sense, the pattern specifications have a degree of matching equal to1,
while semantically unrelated instantiations—in a sense to be formalized below—
have a degree of matching equal to zero.

Patterns may be regarded, therefore, as mechanisms to measure thedistance,
similarity, or resemblanceof potential solutions of a matching problem to a pro-
totypical set ofideal or perfectmatches. This similarity function, which reflects
the semantics of the specific problem being considered, is the basis for the def-
inition of numerical measures ofdegree of matching. This conceptualization of
the pattern-matching problem suggests that the pattern-matching problem may
be treated as a generalized logical program, that is, as a procedure to search a
space of potential solutions and to rank their suitability [36, 18], which extends
the theorem-proving approaches of logical programming [13].

In our subsequent discussion, we will define a degree-of-matching function in
terms of thedegree of admissibility, or adequacy, of the modifications required to
transform a database into a modified counterpart that strictly matches the pattern.
Such a best match may be informally described as having the largest admissi-
bility value (i.e., lower transformation cost) among all transformations leading
to transformed databases that match the pattern from a classical-logic viewpoint.
Database transformations are defined as the composition of a sequence of certain
basic edit operations. Each edit operation is associated with a numerical value
gauging its admissibility. The admissibility of a particular transformation is then
defined as a function of the admissibility of its component edits.
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The metrics introduced below determine the extent to which a database matches
the specifications of a pattern, and are based on semantics provided by knowl-
edge structures such as ontologies. These metrics are intended to be employed
in connection with graph-based approaches [41, 8, 48] to database representa-
tion. Graph-editing techniques provide a useful framework to describe a variety
of complex objects while permitting their comparison in terms of the extent (or
cost) of the modifications that are required to transform a graph-based representa-
tion of one object into another. These techniques have considerable generality and
may be applied to a wide variety of problems. In each application, however, it is
necessary that the functions employed to estimate the admissibility of graph trans-
formations reflect the particular meaning attached to each editing operation. This
section is devoted to the derivation, from the perspective provided by a combina-
tion of logical and metric perspectives, of specific admissibility measures, called
database-editing metrics, applicable to pattern matching in databases.

A.1.2 Abstract Data Representations

To establish a rational foundation for the definition of semantic measures of simi-
larity, cost, or admissibility, we describe first a representation of the content of var-
ious databases—expressed through commonly used data-modeling techniques—
in terms of a common description framework based on the notion oftriple. Each
database may be represented either in graph-based terms or as a collection of
triples and, correspondingly, graph-based editing operations may be regarded as
the modification of some of those triples. This modification leads to a transformed
database with a new meaning. The metrics capture, by means of a number between
0 and1, relevant differences in meaning between the original and transformed
database.

We start our discussion by considering several current data modeling approaches
and their major conceptual tools. In particular, we describe how the underlying
data representation structures of those approaches may be themselves modeled, at
a more primitive level, as the conjunction of triples that assert that apropertyor
attributeof an object has a certainvalue, or that an object has a specificrelation-
shipto another object. For example, a triple such as

(Age, U33, 25yrs),

indicates that the value of the propertyAge of the objectU33 is “25yrs” while the
triple
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(Son, U33, U323),

indicates that the objectU33 has the directed relationshipSon to the objectU323.
While formally equivalent from a purely logical point of view, these two types of
triples, calledattribute predicatesandobject predicates, respectively, require a
somewhat different computational treatment, which is discussed in Section A.2.2.

We proceed now to review the key elements of a number of major approaches
to data modeling. We show that it is always possible to represent data models
produced by application of these approaches as a set of triples that specify values
of properties of objects and relations. Basic database editing operations are trans-
formations, having different degrees of admissibility, that add, delete, or modify
these triples.

Although our approach has been developed to deal with databases contain-
ing imprecise, uncertain, or vague information, our discussion will first focus—
mainly to facilitate understanding—on databases where all asserted properties and
relations are precisely defined, that is, each property value is a well-defined ele-
ment of a value domain (e.g., a number, a string) and each relation—itself belong-
ing to a set of ground predicates—relates two unambiguously specified objects.
In this initial treatment. it will be possible, nonetheless, for the information to be
incomplete, in the sense that the value of an attribute of an object may not be spec-
ified as when, for example, the age of a person is unknown. It will also be possible
that, in a similar fashion, certain instances of relationships between objects may
not be specified as, for example, when it is not known who is theFather of ob-
ject P12 of typePerson . We will not consider now, however, situations where
there is partial information about the value of some attribute (e.g., “the Age is
more than 20 years”), when there is ambiguity as to the nature of objects linked
by a relationship (e.g., “the father ofP12 is eitherP23 or P34”), or when the
relation itself is ambiguous (e.g., “P12 is either thebrother or thecousin of
P99”).

A.1.3 Data-modeling Approaches

We will examine several data-modeling approaches identifying abstract mathe-
matical and logical structures that capture the essential aspects of linked data
structures that are germane to the pattern-matching problem. The purpose of this
exercise is to show that data models constructed with these computational tools
might also be represented as collections of triples that describe the values of at-
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tributes of specific database objects.6

Relational models The relational database model [16] is perhaps the formula-
tion that is most readily amenable to conceptual abstraction by means of logical
and mathematical structures. In spite of its simplicity, however, some details of
the underlying representation—such as the concept ofkey—are often the source
of confusion.

The relational model is based on the representation of various objects by tables
listing the values of the properties or attributes of objects. For example, a relation
of the typeTransaction may be represented by a table of event-instances de-
scribing the event characteristics:

Date Paid by Payee Transaction Type Amount

October 1, 1888 David Copperfield Oliver Twist Check $500.00
September 23, 1786Robinson Crusoe V. Friday Cash $45.56
September 6, 1830 C. Ahab M. Dick Stock Transfer $2100.00

Other tables are employed, as is well known, to describe attributes of other
objects such as, in the example above, persons and transaction types. The resulting
collection of interrelated tables provides required descriptions of various objects
and entities and their relations.

Among alternative formulations, the relational model affords the best com-
promise between the requirements implicit in the representation of complex links
between real-world entities and the need to rely on a simple abstract structure
capable of being captured by labeled graphs. In particular, we may note that re-
lational tables, beyond identifying values of properties and attributes, identify, as
part of the database schema, the properties and attributes themselves (e.g.,Date ,
Payee ). Furthermore, it is clear that individual entries may point to instances
of other represented objects (e.g., “C. Ahab”) or to particular elements of certain
primitive sets ofvalues(e.g., a particular date).

The relational model, however, was conceived in the context of classical ap-
plications where the characteristics of entities (i.e., specific “rows” in a relational

6The representation of data by triples and the derivation of equivalent graph representations are
well-known [3, 17]. The nature of the calculus of binary relations, from a historical perspective,
has been discussed by Pratt [31].

45



table) are uniquely identified, within the data model, by the values of a subset
of some attributes (i.e., thekey),7 In applications where the attributes are not
precisely known, the information contained in the key may not be sufficient to
uniquely identify the relational entry by means of the functional mapping that is
implicit in the key-to-attribute mapping. For example, the name of a person may
be only partially known, and other identification characteristics might be unknown
or unreliable. Furthermore, it is possible that two different entries in a relational
table correspond to the same object in the real world (e.g., a person is represented
using two entries with different aliases or identity documents). Conversely, two
identical imprecise entries might correspond to different objects in the real world.

To be able to refer, under such conditions, to each specific tabular entry (hence-
forth called arelationship) we need to be able to uniquely identify it. In our
previous example, after identifying specific “person” entries in the relationPer-
sonsdescribing attributes of individuals (some of which may describe the same
individual) and providing a unique identifier to each relationship in the relation
Transaction, we have the new relation8:

Trans-ID Date Paid by Payee Transaction Type Amount

T-1 Oct. 1, 1888 P-5 P-9 Check $500.00
T-2 Sep. 23, 1786 P-78 P-97 Cash $45.56
T-3 Sep. 6, 1830 P-112 P-323 Stock Transfer $2100.00

From this representation, we may readily describe the relationships of the data
model by triples such as

(Payee, T-2, P-97),
(Amount, T-2, $45.56),

which identifies how links, such asPayee or Amount , relate a specific instance
of an object (e.g.,T-2 ) with an instance of another object (e.g.,P-97 ), or with

7Our discussion of the relational model and other data-modeling approaches has been simpli-
fied, focusing solely on major issues related to graph-based modeling of data structures.

8The identifiers are prefixed by a letter intended to identify the type of object being identified
or linked. This choice was motivated by the desire to preserve some understandability of the
example. In general, identifiers are introduced to uniquely identify a relationship betweendata
entities.
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a value (e.g., $45.56, respectively). This is a binary relation between object-
instances or between object-instances and values of the type identified by the name
of a particular attribute or property.

A.1.4 Logic-based Representations

Approaches based on logical representations such as those inspired in the LISP
and PROLOG programming languages [26, 13] are based on symbolic represen-
tations of data, such asp(O1), q(O2, O3), r(O11, O12, . . . , O1n), interpreted as
knowledge about the properties of various instances of objects.

Although there have been important extensions of these languages that permit
explicit representation of semantic knowledge [4] (e.g., the meaning of the argu-
ments inn-ary predicates), in general, the interpretation of symbolic expressions
is usually not made clear or is hidden in the program itself.

There is a simple conceptual mapping, however, between relational entries and
collections of logical representations of instantiated predicates. For example, a
fact represented asr(O11, O12, . . . , O1n) may be represented in a relational setting
as an entryO11, O12, . . . , O1n) in the relationr. Since there may be multiple
instances of known validity of the relationr and since the values of the related
variables may not be precisely known, it is necessary again to provide a unique
system identifier permitting differentiation between two known instances

r(O11, O12, . . . , O1n) and r(O21, O22, . . . , O2n) ,

of validity of the predicater, by assigning a unique identifierrID to each instance.
From such a conceptual mapping, it is easy to see that symbolic representa-

tions such asq(O2, O3) may be alternatively represented as triples of the form

(Arg1, qID, O2), (Arg2, qID, O3)

whereqID identifies the particular instantiation of the predicateq being represented
using knowledge about its properties or attributes Argi.

9

Frames, logical records, and similar structures Data-based structures relying
on representation of properties of entities by the values of their properties are

9The semantics of both relational identifiers and that of the related variables (or arguments) is
sometimes made explicit through structures that play the role of a database schema.
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conceptually similar to instances of relations.10

Logical recordsdescribe the values and attributes of data objects while identi-
fying related object instances and the nature of such relationships. These descrip-
tions (i.e.,fields, slots), play the same role as column headers in relational tables.
From this observation, it should be clear that any such structure may be repre-
sented as a collection of triples of the type(Field, RecordID, Value)
whereRecordID is the identifier of a particular record (or frame),Field identi-
fies a particular field or slot, andValue is the value of the corresponding property
or attribute associated withField .

Entity-relation models Models based on the entity-relationship (ER) model of
Chen [11] rely on the two basic structures defining properties of real-world entities
(i.e., entities) and their relations to other entities. In either case it is clear that
specification of values of properties or attributes of entities

(Attribute, EntityID, Value) ,

or statements of relations between instances of entities

(Role, EntityID1, EntityID2) ,

whereRole identifies the nature of a link in an-ary relation, by means of triples
provide a description of entities, their links, and the nature of their links that fully
captures the information described by ER structures.

A.1.5 Graph Editing

We now briefly recall the basic characteristics of the graph editing approach of
LAW, seeking to relate it with the database metrics.

The conceptual structures underlying most data representation methods as
well as their instantiation by population with specific objects and relationships
lend themselves to graph-based representations [42]. Graphs provide an effective
way to visualize database structures and contents while facilitating the specifica-
tion of patterns. From a pattern-matching viewpoint, graph-based structures also
provide insights into the nature of the sequences of editing operations leading
from a given database to a transformed prototype of the pattern (i.e., it meets the

10This comment reflects solely concern with graph-based representation of basic links between
data objects.Framesand similar formalisms also provide tools for the specification of complex
constraints beyond the current scope of this report.
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pattern constraints as a classical-logic restriction). The extent of the modifica-
tions required to attain such a transformation may then be employed as the basis
to measure the degree of matching between original and prototype.

Graph-editing approaches rely, however, on notions of cost or adequacy of
graph transformations, which are highly dependent on the meaning of such trans-
formations in the context of the problem under consideration. In the case of pat-
tern matching in large databases, each basic editing operation, such as an edge
addition, corresponds to one or more basic database operations, that is, addi-
tion, modification, or deletion of triples in the triple-based representation of the
database. Each such triple-based operation changes the meaning of the database
to some extent that is commensurate with the nature of the modification. Corre-
spondingly, any measure of admissibility must reflect the importance of the mod-
ifications to the information contained in the original database.

We derive rational bases for the measurement of the admissibility of graph-
editing operations in pattern matching by considering measures of semantic simi-
larity between original and transformed databases. The latter measures are derived
from knowledge structures, such as ontologies, that permit determination of the
extent of resemblance between objects from various viewpoints.

We start our discussion by recalling, for convenience, the basic concepts un-
derlying graph editing without regard for the nature of the problem being ad-
dressed. Our subsequent discussion, however, focuses on the derivation of mea-
sures of cost and admissibility that are germane to pattern matching.

Graph transformations We sketch now the essentials of a theory of graph-
editing transformations.

A graph is a 4-tupleG = (V,E, µ, ν) where

(i) V is a finite set ofverticesor nodes.

(ii) E, the set ofedges, is a subset ofV × V .

(iii) µ : V → LV is a function assigning labels to the vertices.

(iv) ν : E → LE is a function assigning labels to the edges.

A graph mappingbetween two graphsG = (V,E, µ, ν) andG′ = (V ′, E ′, µ′, ν ′)
is a pairM = (ψ, ε) where

(i) ψ : V0 → V ′
0 is a one-to-one mapping between a subset of verticesV0 of V

and a subset of verticesV ′
0 of V ′.
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(ii) ε : E0 → E ′
0 is a one-to-one mapping between a subsetE0 of the edgesE

of V and a subsetE ′
0 of the edgesE ′ of V ′.

such that if two edges are mapped byε, then the nodes connected by those edges
are mapped byψ.

In graph-editing approaches, graph transformations are constructed as the com-
position of a finite number of basic graph-editing operations. Graph-editing op-
erations include mappings between graphs that result in additions, deletions, and
replacements of individual nodes and edges.
A transformation T between two graphsG andG′ is the composition of a se-
quence of edits(→0, . . . ,→m).

Degree of matching The notion of admissibility, of a transformation is intended
to capture, by means of a suitable metric that reflects the semantics of the domain
being modeled, the significance of its effects. Transformations involving editing
operations that highly distort the nature of the original object are assigned a low
admissibility value, while those involving minor modifications have a high admis-
sibility value. An admissibility measureAd is a function that assigns a number
between0 and1 to every transformationT between graphs.

A transformation may be thought of as a path in graph-space connecting a
graph with its transformed version with each edit operation being a step on that
path. From such a perspective, it makes sense to define the admissibility of a
transformation in terms of some function that aggregates the admissibility of each
of its component edits.

Several functions, known astriangular, orT-norms[35], can be shown to have
desirable properties that accomplish such aggregation:

Definition 1: Theadmissibility of a transformation is the aggregation of the
admissibility of its edits by means of a triangular norm∗�, that is,

Ad(T ) = ∗�e∈T Ad(e) .

Several transformations may be consistent with a mapping between two graphs.
It makes sense, therefore, to measure the admissibility of the mapping between
two graphs in terms of the transformation having maximum admissibility:

The degree of matchingbetween two graphsG andG′ is the admissibility of
the transformationT changingG into G′ that has the largest admissibility value
among all such transformations.
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A.1.6 Similarity

The notion ofsimilarity or resemblanceis central to the approach presented in
this report. Similarity measures provide the bases for the determination of the
admissibilityof certain transformations of a database into another that meets the
logical conditions expressed by a pattern. The notion of admissibility, which may
be thought of as being dual to the concept of cost,11 is introduced to indicate
that certain database modifications are more permissible than others. The basic
idea is that transformations resulting in a similar database are more admissible
(i.e., less costly) than those resulting in substantial difference between the original
and transformed data. Thedegree of admissibilityof a database transformation is
defined in terms of the numerical measures of similarity, which are themselves
the counterpart of the notion ofdistance. Similarity measures, mapping pairs
of objects into a numeric value between 0 and 1, provide a desirable foundation
for the development of a rational theory of database editing, not only because
they are related to notions of cost, utility, and admissibilty but also because they
provide the basis to extend classical logical relations of inference to approximate,
multivalued, counterparts [33].

A.1.7 Similarity Measures

Similarity functions are measures ofindistinguishabilitythat may be thought of as
being the dual of the notion of bounded distance (i.e., a distance function taking
values between 0 and 1). A similarity measure assigns a value between 0 and 1 to
every pair of objectso ando′ in some spaceX. Typically, similarity measuresd
may be obtained from knowledge of distance functionsd by simple relations [35]
such asS = 1 − d . The similarity of an objecto to itself is always equal to1
(corresponding to a distance equal to zero), while the minimum possible value for
a similarity function is0.

The advantage of the use of similarities in lieu of distances lies on their ad-
vantages as the foundations of logics of utility [36], which provide the bases to
combine on a rational basis, measures defining utility, admissibility, and cost from
various perspectives. A detailed discussion of the notion of similarity is beyond
the scope of this report. We limit ourselves to pointing out the important proper-
ties of similarity (or generalizedequivalence) functions:

11The numerical degree of admissibility of a database transformation is the complement of the
notion of cost in the sense that low costs correspond to high admissibility values while high costs
correspond to low admissibility values.
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Reflexivity: S(x, x) = 1, for all x in X,

Symmetry: S(x, y) = S(y, x), for all x, y in X.

Transitivity: S(x, y) ≥ S(x, z) ∗�S(y, z), for all x, y, z inX, where∗� is one of
a family of numerical binary operators calledtriangular normsor T-norms.

The transitivity property is of particular importance as it extends the transitive
properties of classical deductive methods (i.e., the transitvity of the inferential
procedure known asmodus ponens) into multivalued-logic schemes capable of
modeling numeric measures of implication and compatibility [36].

Similarity and utility The metric notion of similarity is closely related to utili-
tarian notions such ascost, admissibility, andutility [34].

Utility functions defined on a domainDomO assign to every objectO of that
domain a numberu(O) between0 and1, which measures the extent to which the
situation represented by that object is good or desirable.

In robotics problems, for example, the position of a mobile autonomous robot
may be said to be good because it is “not in danger of hitting an obstacle,” or
“because it is in communication with other robot” [39]. In a control-systems or
decision problem, different actions may be good or bad, from various viewpoints,
depending on their outcome (i.e., the state of the system being regulated).

In pattern-matching problems, utility functions provide a convenient proce-
dure to define generalized predicates that measure the extent to which an object
meets some elastic constraint from the perspective of the usefulness of that ob-
ject as part of the instantiation of a pattern. For example, if a pattern requires
that the amount of aTransaction should be “large,” then the definition of
the term “large” provides a procedure to measure the adequacy of any possible
amount as part of a pattern requiring that an object of the typeTransaction
has a large value. In the case of predicates involving various arguments, such as
NearlyOneHourLater (time1, time2), the corresponding utility function gauges
the adequacy of a pair of time values as arguments satisfying the relationNearlyOneHourLater .12

Utility functions provide, therefore, a convenient way to rank the desirability
of events, situations, and objects in a numerical scale. As such, they have been a
central concept in modern decision theory [32].

12This characterization is the basis for the utility-based interpretation of fuzzy sets and fuzzy
relations [36].
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If several utility functionsu1, u2, . . . , un are considered when comparing pairs
of objects in a domainO, then a similarity function may be defined by composition
of criteria defined for each similarity [47]:

S(O,O′) = min
i

[ |ui(O)� ui(O
′)| ] ,

where� is the pseudoinverse of the triangular norm∗�, and where|a�b| stands for
min(a�b, b�a). Basically, the above result, known asValverde’s Representation
Theorem states that two objects, events, or situations are similar if, from every
important viewpoint, they have similar utility values.

The notion of utility is also the basis for certain multivalued logics [18] and,
more important, for the derivation of proof procedures that are directly applica-
ble to problems such as pattern matching (i.e., as this problem is equivalent to
proving that the data implies the pattern). Recent results indicate that these logics
are closely related to the similarity-based logics underlying our approach to pat-
tern matching [36]. Conversely, similarity measures may be employed to derive
measures of cost and admissibility.

Numerical measures of admissibility We discuss now approaches to the defi-
nition of similarity and admissibility measures in the context of pattern-matching
problems.

Semantic distance, similarity, and ontologies Our simplest scheme for numer-
ical assessment of the admissibility of edit operations is based on the similarity
measures between leaves of an ontological directed acyclical graph (DAG) that
measure the extent to which leaf nodes share ancestors in the ontology [36]. This
scheme, first proposed by Ruspini and Lowrance in the context of the development
of the SRI’s SEAS system [38], is also similar, in spirit, to approaches to defining
semantic distance between concepts on the basis of the knowledge provided by a
generalized thesaurus [7].

These ontology-based measures of similarity permit only, however, gauging
the resemblance between different types of unlinked objects. Pattern-matching
problems, however, require the consideration of similarity between complex linked
structures where the similarity between two such structures depends on the nature
of the links and that of the attributes of the related objects. To address this prob-
lem, we discuss mechanisms for the derivation of complex similarity measures in
terms of simpler constructs.
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In our discussions, we will, mainly for the sake of simplicity, assume that every
node in an ontology is relevant to the measurement of similarity between classes
of objects. In general, however, the measurement of similarity between types is
made on the basis of a connected subgraph of the ontology as many properties
might be irrelevant to certain types of comparison (e.g., certain items of furniture
and cows both have four legs but this shared property is generally irrelevant to the
characterization of similarity between these rather different objects).

Being closely related to the notion of distance, several measures of similar-
ity have been proposed to address problems ranging in nature from sociology and
psychology to pattern recognition [41, 6]. Our approach to the description of simi-
larities between basic model objects exploits the availability of domain knowledge
in the form of ontologies of various object domains and ontologies of relations.

Ontologies provide semantic bases for the definition of notions of distance, re-
semblance, and similarity between concepts. In most applications of knowledge-
based concepts, objects belong to certain classes, ortypes. Ontologies, through
class subsumption structures, corresponding to a DAG, permit the definition of a
distance function between elements of the ontology, as done by Wolverton [48],
on the basis of the length of the paths linking two elements of the ontology.

While this type of approach provides a simple mechanism to gauge conceptual
proximity on the basis of domain semantics provided by ontologies, the identifi-
cation of a framework to measure the extent by which a representation of data
objects and their relations match a reference pattern requires development of a
more sophisticated methodology. Several considerations support this conclusion:

• The process of pattern matching is inherentlynonsymmetric, since the edit-
ing operations required to transform one pattern into another are different
from those accomplishing the inverse mapping.

For example, the admissibility of the operation replacing an object of the
type Italian by another of the typeEuropean , in order to satisfy a
pattern requirement, (identifying asetof Nationalities ) should be 1
(i.e., the associated cost should be 0), as the data is more specific than the
requirement expressed by the pattern, since every possible instance of an
Italian is an instance of an European. The replacement of a value node
of the typeEuropean by another with a value ofItalian to match a
pattern requirement, should, in general, have a measure of admissibility
that is strictly smaller than 1 since it assumes additional knowledge.

• In general, the admissibility of editing operations replacing a value set with
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another value set cannot be uniquely determined. For example, computing
the costs associated with replacing the labelSouthernEuropean of a
value set node (describing the set where the attributeNationality of an
instance ofPerson is known to be) with the labelWesternEuropean
might very well have a potential admissibility of 1 (i.e., a cost of zero), as
there are some nationalities (e.g.,Spanish ) in the intersection of the value
sets. On the other hand, the different nature and extension of the classes in-
dicates that there may be apotential cost (corresponding to an admissibility
value strictly smaller than 1) associated with that replacement (e.g., addi-
tional information may reveal that the person was Bulgarian). This range
of possibilities suggests that, in many cases, the editing cost may be better
represented by aninterval of possible valuesrather than by a single number.

• The measurement scheme should reflect the extent to which different classes
of objects share important common properties. Ontologies, identifying var-
ious relations of set inclusion among the classes represented by ontology
types, provide a solid foundation for the measurement of resemblance on
a semantic basis. Path lengths on the ontological graph, however, do not
accurately reflect, in most instances, this semantic knowledge.13

We propose next a scheme to measure costs by subintervals of the [0,1] interval
of the real line representing, on the basis of knowledge provided by ontologies,
thepossible costsassociated with basic editing operations.

Similarity between leaf nodes The relations of set inclusion between nodes
in an ontology may be represented in a number of ways by vectors describ-
ing whether a node of some type is the ancestor of another node. Ruspini and
Lowrance [38] suggested a representation of thej-th node in terms of a vector
having the lengthn of the cardinality of the ontology with thek-th component of
that vector, representing whether or not thek-th node is an ancestor of thej-th
node, that is,

vk(Nj) =

{
1, if nodek is an ancestor of nodej.
0, otherwise

13In an ontology ofAnimals , for example, the distance between the classesDog andCat is
strictly smaller than that between any particular breed of dog and any particular breed of cat.
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On the basis of this representation the degree of similarity between the leaf
nodesNi andNj may be defined by

Ŝ(Ni, Nj ) =
< v(Ni), v(Nj) > −1√

(||v(Ni)||2 − 1) (||v(Nj)||2 − 1)
,

wherev(Ni) andv(Nj) are the just-introduced binary vector representations, of
the nodesNi andNj.14

This similarity measure is a symmetric function taking values between0 and
1, such that the similarity of a leaf node to itself is always equal to1.

On the basis of this measure of similarity, it is possible—as will be shown
when discussing extensions of the notion of similarity between objects to similar-
ity between classes of objects—to derive interval measures that gauge theneces-
saryandpossibleadmissibility of graph-editing transformations.

Complex similarity measures While ontologies permit the construction of semantic-
based similarity functions between basic objects (e.g.,Countries by Type of
Economy) and between values of attributes (e.g., ,Age), it is often the case that
many of the structures found in a typical pattern-matching problem, involving
complex links between primitive objects, may not be amenable to this type of
treatment.

Consider, for example, the set of linked objects characterizing an illegal trans-
action such asMoney Laundering. Unless this type of object has been sub-
ject to some form of ontological characterization, it should be clear that any mea-
sure of similarity between objects of this type needs to be based on the similarity
of attributes of corresponding objects in each structure.15

These complex structures may be characterized, however, through logical ex-
pressions, such as

Person (x) ∧ Person (y) ∧Money-Transfer (z) ∧
∧ Depositor (x, z) ∧ Payee (x, z) ∧ . . .⇒ Money-Laundering (x, y, z. . . .) ,

14The definition assumes that the root node is not itself a leaf node.
15In this regard, it is important to note that ontologies, if available, already summarize the

important distinctions between objects in terms of their significant attributes. The characterization
of an object, such as aPerson in terms of its ontological lineage as opposed to a vector of
attributes is a matter of choice. In the case of complex, domain-specific, structures, however, it
is reasonable to assume that ontologies will not be readily available, thus requiring a different
similarity-measurement approach.
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which can be employed as the basis for the definition of a similarity measure
between money-laundering events as a function of the similarities between the
various basic ground predicates and the logical operators that interconnect them
[37].

In general, the computation of these complex measures is straightforward. In
some cases, however, as when trying to measure similarity between say, people, by
the type of company they keep, application of the above approach results in a def-
inition that depends on other values of the measure being defined, as the similar-
ities between associates depend on the nature of the very people being compared
(since human association is a symmetric relation and the people being compared
are themselves associates of their associates). While the required measure may
be usually derived by iteration,16 it is important to reduce the complexity of the
definition as the underlying computational problem may be intractable. In these
cases, common when considering transitive relations, it may be required to limit
the extent of the structures being compared to reduce such computations.

Generalized similarity measures In order to determine, on a sound formal ba-
sis, the admissibility of each editing operation in terms of the nature of the objects
and links involved it is necessary to derive a general metric characterizing the
acceptability of the outcome of an editing operation from the viewpoint of the
reference pattern being matched.

Ruspini [33, 37] proposed, in the context of studies about interpretations of
fuzzy-logic concepts, the measurement of the similarity between two sets by ex-
tension to a logical framework of concepts, notably the well-known notion of
Hausdorff distance, from the theory of metric spaces. The connection between
these concepts and utilitarian interpretations of certainpossibilisticconstructs has
been studied recently to a considerable extent [36].

The basic construct of this theory is the function

I(A | B) = min
o∈B

max
o′∈A

S(o, o′) ,

defined also over pairs of subsets ofX, which measures thedegree of inclusionof
B in A with respect toS, that is, the extent of the minimal metric neighborhood
of B that enclosesA (in the sense of set inclusion).

16The definition of similarity in these cases is equivalent in character to the “fixed point” defi-
nitions of classical logic. To use another analogy, we may say that the similarity measure is being
defined through an implicit equation.
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The nonsymmetric metricI will be useful in the definition of costs of basic
editing operations as it measures the extent by which the concept represented by
the classA needs to be extended (or “stretched”) to encompass that described by
the classB. The metricI is a measure of set inclusion since a value ofI(A | B)
equal to one indicates that every member ofB is also a member ofA, that is, that
B is included inA.

The dual of the degree of inclusion measure is that ofdegree of intersection,
defined by

Π(A,B) = max
o∈A

max
o′∈B

S(o, o′) .

measuring the extent to which either set has to be extended to intersect the other.
When this number is1, then the sets have at least one point in common. On the
other hand, a large value of thepossibility measureΠ(A,B) indicates that all
points ofA are far apart from all points ofB.

It is clear from the definitions ofI and ofΠ that it is alwaysI(A | B) ≤
Π(A,B) . The numerical interval[I(A | B),Π(A,B)] represents the potential
values of the degree of similarity between an objecto′ in B and its closest object
o in A.

The functionI has a number of useful properties that are the foundation of
our approach to the estimation of the degree of matching between a pattern and
a database in terms of the∗�-aggregation of the admissibilities of a sequence of
simpler editing operations. The following properties are of particular importance
to pattern matching.
If A,B, andC are subsets of a domainX, then

1. If B ⊆ A, thenI(A | B) = 1 ,

2. I(A | B) ≥ I(A | C) ∗� I(C | B) ,

3. I(A | B) = max
C

[I(A | C) ∗� I(C | B)] .

In what follows, we will need to consider situations where single objects are
either added or deleted to an existing setA to produce a transformed setA′. In
such cases, we will need to compute the degree of implicationI(A | A′) as the
measure of the admissibility of the simple operation changingA intoA′. In those
cases, it is straightforward to see that

1. If a membero of A is deleted to produceA′, that is ifA = A′ ∪ {o}, then
I(A | A′) = 1 .
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2. If a membero of X is added toA to produceA′, that is, ifA′ = A∪{o}, then
I(A | A′) = max

o′∈A
S(o, o′) , whereS is the similarity function underlyingI.

A.2 Pattern Matching and Data Transformations

We present the basic elements that permit the estimation of the degree of matching
between a pattern and a database.

We start our discussion by characterizing the basic data constructs permitting
the characterization of a database as a collection of assertions about binary rela-
tions between objects or between objects and their properties. On the basis of that
characterization, we present a formal definition of aDatabaseas a set of instances
of binary predicates. The database may be interpreted, in logical terms, as the
conjunction of that set of predicate instances.

We proceed then to sketch the general characteristics of our editing approach
by means of definitions of the degree of admissibility of sequences of basic database-
editing operations and that of degree of matching. Finally, we present results char-
acterizing the degree of admissibility of basic database-editing operations in terms
of related similarity functions.

A.2.1 Predicates, Objects, Attributes, and Values

Our brief review of major data modeling approaches in Section A.1.3 showed that
their underlying representation mechanisms may be mapped into an equivalent
collection of triples describing the nature of a relation between apair of objects,
or between anobjectand one of itsattributesor properties.

Following OpenCyc [14] nomenclature, we will refer to these classes of struc-
tures as being eitherbinary object predicatesor binary attribute predicates, re-
spectively (orobject predicatesandattribute predicates, for short).17

Instances of object predicates such as(isFather, P12, P34) , some-
times calledrelationshipsin the database literature, state that the two object in-
stances are related by the specified relation. Instances of attribute predicates, such

17It is important to note that the qualifier “binary” correctly describes the arity of logical pred-
icates defining a relation between two objects or the relation between an object and one of its at-
tributes, respectively. The use of the termtriple is justified, however, as three components need to
be specified to unambiguously identify an instance of a binary predicate (i.e., (predicate-instance
object-instance object-instance) or (predicate-instance object-instance attribute-value), respec-
tively).
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as(hasAge, P12, 55yrs) , specify the value of a property of an object in-
stance. In what follows, and in deference to terminology employed in the graph-
theoretical and database literature, we will also refer to specific instances of object
predicates and attribute predicates aslinks.

A.2.2 Databases

After presenting the basic constructs underlying our approach and reviewing the
important logical, metric, and utilitarian structures that relate them, we are now in
a position to make a formal definition of a general data model for the representa-
tion of precise data and knowledge.18

Abstract Data Model We start our discussion with a characterization of the
various knowledge and data components of a data repository.

Definition 2: A data model is a 4-tuple

D = ( Obj,Vals,Pred,Data) ,

where

(i) Objects: Obj is a nonempty set, called the set ofobjects.

It is often the case that objects are structured by means of knowledge struc-
tures, such as ontologies, describing set-inclusion and subsumption rela-
tions between objects as well as the conditions upon object properties that
make possible the differentiation of subclasses (e.g., the property ofAnimals
that makesVertebrates different fromInvertebrates .

(ii) Values: Values are nonempty sets in a collection of basic primitive types
Vals, such as numbers, strings, or members of predefined discrete sets such
as

BalkanCountries = { Albania, Bosnia, . . . , Yugoslavia }

that permit specification of the values of properties and attributes of objects.

18As previously noted, our model allows representation ofignoranceabout the values of at-
tributes or about the possible existence of relations between database objects.
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(iii) Predicates: Pred is a nonempty set, called the set ofpredicates, or the set
of links.

Links may also be thought of as being relations defined between objects in
some domain and the set of possible values of somepropertyor attribute.
Members (in the set-theoretic sense) of such a relation are predicate, or link,
instances, being sometimes also calledrelationships. As we have already
pointed out, there is considerable latitude in data modeling as to what con-
stitutes an entity (related to values of its attributes) and what is a relation
(related to other objects). In the context of our model, predicates are differ-
ent from objects in that the latter are instantiated and identified as a specific
data object of a certain class (its domain), while the former are generic and
are not instantiated.

Since predicates are typically members of some domain that is structured
by knowledge constructs such as ontologies, we will assume that, in gen-
eral, there exists a similarity functionSimL

P defined between pairs of predi-
cates.19

(iv) Predicate Classes and Instances: As discussed earlier, we will need to con-
sider two classes of predicates, calledbinary object predicatesandbinary
attributes predicates, respectively.

Instances of object predicates expressed by triples such as

(predicate, object-instance, object-instances)

state that two object instances are related by a specific object predicate, as,
for example, in(isAncestor, P123, P234) .

Instances of attribute predicates, expressed by triples such as

(predicate, object-instance, attribute-value)

specify the value (that is, a unique element of some primitive set in the col-
lectionVals) of an attribute of the specified object instance, as, for example,
in (hasCityAddress, P543, ‘‘Palo Alto’’) .

19This function defined between predicates should not be confused with similar metrics, dis-
cussed below, between pairs of predicateinstances.
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We will assume that the setsPO andPA of predicate instances have a metric
structure defined by means of similarity functionsSimO

P andSimA
P , respec-

tively. We discuss below an approach to the definition of such similarity
measures.

(v) Data: The dataData is a tuple(DataO,DataA), whereDataO is a set
of object-predicate instances andDataA is a nonemptyset of attribute-
predicate instances.

This formal definition simply says that the database is a collection of triples
relating objects and a nonempty collection of triples specifying the values
of properties and attributes of objects. We require the latter collection to
be nonempty to assure that the information represented in the database is
grounded on objects that are described, to some extent, by their properties.

A.2.3 Similarities between Predicate Instances

The definition of a metric structure in the setsPO andPA of predicate instances
is an essential element of our approach since it permits definition, on a rational
semantic basis, of the admissibility functionsAdO

P andAdA
P that measure the ade-

quacy of basic database editing transformations.
We have shown that knowledge structures such as ontologies permit the def-

inition of similarity measures in various domains. Our approach will not place
any constraints on the nature of the similarity measuresSimO

P andSimA
P between

predicate instances other than assuming that there are similarity functions defined
within object-instances (on the basis of their relationships and values of their prop-
erties) and between specific property values.20

Among the many possibilities open for such definitions, however, there is a
simple choice that defines similarity between triples as the composition of the
similarities between each of the triple components. A straightforward definition
of the similarity between triples in terms of simpler measures defined over their
three components, however, is not possible as, usually, these measures depend on
the nature of the predicate being considered. A similarity function defined over
the set of integer numbers may be employed to compare person ages (measured

20To keep the scheme as general as possible, we will assume that it is possible to define a func-
tion between any two members of some set in the collectionVals (e.g., between a number and a
string). In practice, however, many of these comparisons will be meaningless and the correspond-
ingly similarity values will be equal to zero.
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in years), while a different metric may be required to compare their weights (ex-
pressed in kilograms). Although both similarity functions compare elements of
the same primitive set (i.e., integers), it is clear that their definition is strongly de-
pendent on the nature of the predicates involved (i.e.,hasAge andhasWeight ,
respectively).

To arrive at a simple suitable formulation that properly addresses this prob-
lem, consider first the problem of defining the similarity of two attribute-predicate
instances(l, o, v) and(l, o′, v′) having the same first component, that is, the same
attribute predicate.

Assuming that, for every attribute predicatel, there exists

1. a similarity functionSiml
O defined between pairs of objects inObj (i.e.,

a way to compare possible replacements of the second component of the
tuple)

2. a similarity functionSiml
A defined between pairs of attributes each lying in

some (usually, but not necessarily, the same) primitive value set contained
in the collectionVals (i.e., a way to compare possible replacements of the
third component of the tuple)

we can now define a similarity function in the setP l
A = {(l, o, v): o is an object,, v is a value}

SimA
P( (l, o, v), (l, o′, v′)) = Siml

O(o, o′) ∗�Siml
A(v, v′) ,

where∗� is a T-norm such thatSiml
O, andSiml

A are ∗�-transitive for all linksl in
Pred.

Trying to extend this definition to the case where it is necessary to measure the
resemblance between attribute-predicate instances(l, o, v) and(l′o′, v′), involving
different predicatesl andl′, we resort to the∗�-transitive similarity functionSimL

P ,
introduced earlier, which is defined between pairs of attribute-predicates inPred.
Although this function provides the bases for the required extension, the depen-
dence of metrics measuring resemblance between objects and between attribute
values on the nature of the attribute predicatel demands that, when comparing
(l, o, v) and (l′o′, v′), we define whether we employ metrics that measure such
similitudes either from the viewpoint ofl or from that ofl′.

While several choices are possible, our preferred approach is to require that, in
order for(l, o, v) to be similar to(l′o′, v′), the following conditions must be met:

1. The predicatesl andl′ should be similar.
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2. The objectso ando′ should be similar from the viewpoint of the predicatel
andfrom the viewpoint of the predicatel′.

3. The attribute valuesv andv′ should be similar from the viewpoint of the
predicatel andfrom the viewpoint of the predicatel′.

To meet the desired requirement that the objectso ando′ be similar from the
viewpoint of the predicatesl andl′ (similarly with the attribute valuesv andv′),
we need to define a function that combines the numeric distinctions made both
by Siml

O and Siml′

O (similarly, Siml
A and Siml′

A). The following result, stated
without proof, permits to define the required similarity function:
Theorem: LetS1 andS2 be ∗�-transitive similarity functions between objects in a
domainX. The functionS12 = min (S1, S2) , , is the largest∗�-transitive similarity
function such thatS12 ≤ S1 andS12 ≤ S2.
This result allows us to define a similarity function that measures the required
distinctions from the criteria imposed by both attribute predicatesl andl′:

Sim(l,l′)
A = min (Siml

A,Siml′

A) ,

Sim(l,l′)
O = min (Siml

O,Siml′

O) .

From these definitions we can now define a metric between pairs of attribute-
predicate instances as

SimA
P( (l, o, v), (l′, o′, v′)) = SimL

P(l, l′) ∗�Sim(l,l′)
O (o, o′) ∗�Sim(l,l′)

A (v, v′) ,

The definition of a similarity function between object predicate-instances(l, o1, o2)
and(l′, o′1, o

′
2) on the basis of

1. a ∗�-similarity functionSimL
P defined between pairs of object-predicates in

Pred

2. a ∗�- similarity functionSiml
O defined, for every object-predicatel in Pred,

between pairs of objects inObj (i.e., a way to compare possible replace-
ments of the second component of the tuple)

3. a ∗�- similarity functionŜim
l

O defined, for every object-predicatel in Pred,
between pairs of objects inObj (i.e., a way to compare possible replace-
ments of the third component of the tuple)
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is given by

SimO
P( (l, o1, o2), (l′, o′1, o

′
2)) = SimL

P(l, l′) ∗�Sim(l,l′)
O (o1, o

′
1) ∗� Ŝim

(l,l′)

O (o2, o
′
2) ,

where

Sim(l,l′)
O = min (Siml

O,Siml′

O) ,

Ŝim
(l,l′)

O = min (Ŝim
l

O, Ŝim
l′

O) .

To complete our definition of similarity between predicate instances, we will
assume that, having usually rather different meanings, the similarity between any
object-predicate instance and any attribute-predicate instance is zero.

A.2.4 Database Editing

We are now in a condition to propose a database-editing methodology to compute
the degree of matching between a database and an instantiation of a pattern. Each
basic database editing operation, which may include

1. Deletion of binary-predicate instances

2. Addition of binary-predicate instances

3. Modification of binary-predicate instances

transforms a databaseD into a modified databaseD′. If, as discussed earlier,
databases are thought of as sets of predicate instances, it is reasonable to measure
the degree of adequacy of any transformation employing a measure, based on the
underlying metric structures, that gauges the extent to which the knowledge ex-
pressed byD′ is consistent with that expressed byD. Such a measure is provided
by the degree of implicationI:

Definition 3: The degree of admissibility of a basic transformation changing
a databaseD into a databaseD′ is the degree of inclusion ofD′ in D, that is,
I(D|D′).

We will consider sequences of transformations of the triples in a database
that progressively transform the database into a modified, edited, database that
matches the pattern. The degree of admissibility of a sequence of basic database
editing transformations

T = (E1, E2, . . . , En) ,
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is defined as the composition of the degrees of admissibilities of the component
editing transformations, that is,

Ad(T ) = Ad(E1) ∗�Ad(E2) ∗� . . . ∗�Ad(En) .

The validity of this aggregation is assured by the transitivity of the degee of inclu-
sionI [33].

Degree of matching Several transformations, or sequences of database edit-
ing operations, may result in the transformation of a databaseD into the same
transformed databaseD′. We may think of each such sequence as a path in a
database space between the original and the transformed database. Each path ac-
complishing the same transformation has an associated admissibility measure that
is a function of the admissibility of individual edits. From this perspective, it
makes sense to measure the admissibility of a transformation in terms of the path
having maximum admissibility.

Definition 4: The degree of matchingbetween two databasesD andD′ is
the admissibility of the sequence of transformationsT mappingD intoD′ having
maximum admissibility.

It is important to note that, unlike classical similarity and distance metrics, the
degree of matching function defined above will not be, in general, a symmetric
function of its two arguments. The major reason for this lack of symmetry lies on
the different cost associated with editing operations that are the inverse of each
other (e.g., the cost of adding a predicate-instance to a databaseD is not the same
as that of deleting a database fromD′).

Admissibility of basic edit operations In our formulation, the value of admis-
sibility measures for basic database-editing operations depends on the nature of
predicate-instances being modified. Whenever needed to introduce new triples,
however, new unlinked objects will be added to the database at no cost (i.e., addi-
tion of new, unrelated, internal object representations does not entail introduction
of unavailable knowledge).

Addition of binary-predicate instances The addition of triples of the form

( predicate,object 1,object 2 ) ,
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results in the replacement of a databaseD by the modified databaseD′ = D∪{t}.
As we have already seen, the degree of admissibility of this editing transformation
E is given by

Ad(E) = I(D|D ∪ {t}) = max
t′∈D

SimO
P (t, t′) .

A similar argument leads to the definition of the admissibilityAd2
P(T ) of the

transformation that adds an attribute-predicate instancet to the databaseD as

Ad(E) = I(D|D ∪ {t}) = max
t′∈D

SimA
P (t, t′) .

Deletion of binary-predicate instances The deletion of a predicate instance
from a databaseD results in a databaseD′ that is a subset of the transformed
database.

These transformations are fully admissible, that is,

Ad(E) = I(D′ ∪ {t}|D′) = 1 ,

since there should not be any cost associated with disregarding information that
facilitates the matching between database and pattern. On the other hand, the
inverse operation—adding a predicate instance to the database—entails, as we
have seen above, the introduction of information that is not supported by prior
evidence and its admissibility is measured by the extent to which the assumed
information resembles that in the database.

Replacement of binary-predicate instances It is straightforward to prove that
the admissibility of a basic editing transformationE of replacing an object-predicate
instancet by another object-predicate instancet′ is given by the expression

Ad(E) = max
′′∈D

SimO
P (t′,′′ ) .

This result, which is consistent with our previous estimates of the admissibility of
addition and deletion of triples, shows that the cost associated with the replace-
ment of a triplet by a triple t′ is equivalent to the cost of addingt′ composed
with the cost of deletingt. Since, as we have seen, there is no cost associated
with deletions, the cost of replacement is, therefore, simply that of adding the new
triple.

A similar result holds for replacement of attribute-predicate instances, that is,

Ad(E) = max
t′′∈D

SimA
P (t′, t′′) .
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A.3 Imprecision, Uncertainty, Vagueness

Our discussion has focused, so far, on the nature of databases that are conventional
in the sense that, whenever the value of the attribute of an object is specified,
such a value is a unique element of the range of possible values of the attribute.
Similarly, if two objects are related, or linked, there is no ambiguity as to their
identity.21 We start our exposition by briefly sketching the sense in which terms
such as “imprecise,” “uncertain,” or “vague” are used in our exposition.

Although a convention is yet to be reached among practitioners as to the proper
usage of the termsimprecisionand uncertainty, throughout this discussion we
will describe imprecision as the inconvenient characteristic of information that
does not allow identification of the value of an attribute or does not permit unique
identification of objects having a relationship. Rather, it will be assumed that im-
precise information permits us to identify a set of possible attribute values or a set
of objects where the actual attribute value or the related object lies, respectively.

The following assertions exemplify imprecise knowledge:

“The age of personP-3 is at least20 years ,”
“The father of personP-99 is either personP-100 , or person
P-102 .”

The key feature of imprecision is the inability to specify actual values of at-
tributes or to permit unique identification of objects, allowing, rather, identifica-
tion of a subset of the range of a particular attribute or relation.

We also discuss possible imprecision about the nature of the links that define
the property being described or the nature of the relation between two objects. It
may only be known, for example, that

“PersonP-46 is aRelative of PersonP-3 ,”

while better knowledge may reveal thatP-46 is theFather of P-3 , that is, a
more precise characterization of the link between persons.

The termuncertainty is usually employed in the literature to describe proba-
bilistic knowledge about the value of an attribute or about the identity of linked
objects as exemplified by

“The probability that thetotal-rainfall will be 50in is 50%.”
“The probability that thefather of P-90 is P-3 is 90%.”

21As we have noted, however, our previous treatment is general enough to be applicable to
incomplete databases, where values of certain properties may not be specified, or where, similarly,
certain relation instances may be missing.
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essentially defining elements of a probability distribution in the range of a prop-
erty or relation (i.e., the conditional probability that a property has a value, or
the conditional probability that an object is related to another object,given avail-
able evidence). The basic difference between imprecise and uncertain knowledge
is that the former simply specifies a subset of possible values or related objects22

while the latter fully specifies a probability distribution over the range of the prop-
erty or relation [50].

In this report, primarily for the sake of clarity, we confine our attention to
pattern-matching problems involving imprecise information. While the extension
to uncertain information is relatively straightforward, it involves the introduction
of functions defining distances and similarity between probability distributions,
resulting in the consideration of issues that are not central to the problem being
addressed. For the same reason, we also avoid discussion of generalized schemes,
such as theDempster-Shafer calculus of evidence [40] (which relies on a combi-
nation of imprecise and uncertain representations of partial knowledge) nor do we
deal with extensions to thefuzzydomain (which are concerned with the represen-
tation of vague information).

A.3.1 Imprecise Objects, Values, and Relations

The introduction of imprecision in data models adds considerable complexity to
the nature of the problems that must be considered in the context of a pattern-
matching application. The lack of accepted methodologies for the representation
of imprecise knowledge is a major obstacle to straightforward theoretical exten-
sions. Reliance on conventional mechanisms for identification of objects on the
basis of the values of their attributes, such askeys, can no longer be employed,
since imprecision on the values of properties or in the identity of related objects in-
troduces ambiguities on the nature of the objects being modeled. Furthermore, as
we will examine in some detail, the metric structures required for determination of
the degree of admissibility of a transformation are no longer symmetric—properly
reflecting the different costs associated with a transformation and its inverse (e.g.,
replacingAnimal by Cow introduces new knowledge while the converse trans-
formation does not).

22This specification may be thought of as stating that the probability that the value of a related
attribute or object lies on some subset is 1, i.e., a partial specification of a probability distribution.
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Imprecise databases Our previous database model will now be extended to per-
mit the representation of imprecise knowledge about the nature of links, related
objects, and attribute values.

Definition 5: A data model is a 4-tuple

D = ( Obj,Vals,Pred,Data) ,

where

(i) Objects: Obj is a nonempty set, called the set ofobjects.

While we will not introduce any substantive changes to our previous char-
acterization of the setObj, we will assume, however, that it is possible to
describe a finite set of objects simply by defining its members, i.e.,

Object-Set = {Object 1, . . . , Object n } .

This capability permits the representation of imprecise knowledge about the
nature of objects related to some object instance, such as

(Father, P12, {P23, P34 }) ,

representing knowledge that theFather of personP12 is eitherP23 or
P34.

(ii) Values: Values are nonempty sets in a collection of basic primitive types.

Once again, we will assume that it is possible to represent finite sets of
property values, i.e.,

Value-Set = {Value 1, . . . , Value n } .

This capability permits the representation of imprecise knowledge about the
values of an attribute of an object instance, such as

(hasCityAddress, P12, { “Menlo Park”, “Palo Alto”
}) ,

representing knowledge that personP12 lives either in Palo Alto or in
Menlo Park.

In the case of sets in the collectionVals, however, we will assume that there
usually exist domain-dependent, taxonomical structures, defined in those
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sets that permit characterization, for example, that theNationality of a
Person is European (i.e., as opposed to specifying a particular country)
or that theAge of aPerson is between 20 and 30 years.

We will denote byLeafV the collection of allleaf nodes of all taxonomi-
cal structures defined in sets belonging toVals. This set will contain, for
example, all atomic strings, integer numbers, and members of sets such as
European that do not have any successors (e.g.,Italian ).

We will further assume that any taxonomical entry inVals is equivalent, in
a set-theoretical sense, to the set of its descendant leaf nodes. For exam-
ple, the valueEuropean is equivalent to the set of all specific European
nationalities, i.e.,{Spanish , Italian ,French , . . .}

(iii) Predicates: Pred is a nonempty set, called the set ofpredicates, or the set
of links. Again, we assume that there exists a similarity functionSL defined
between pairs of predicates.

We will now assume, however, that there exists a hierarchical order between
links defining, as was the case with values, a generalized taxonomical struc-
ture between links. While in our previous treatment, all predicates were dis-
tinct members of the setPred, we now allow the possibility that predicates
may be related by the notion of logical implication. For example

Son ⇒ Child ⇒ Relative ,

exemplifies predicates that define different levels of imprecision, orgranu-
larity, of relations between persons.

As was also the case with values, we will denote byLeafL the set of all leaf
nodes ofPred, i.e., the set of allatomic, or ground, predicates. Similarly,
we will equate each predicatePredicate in Pred with the set of its de-
scendant leaf nodes, that is, the set of all atomic predicatespredicate
that implyPredicate .

(iv) Predicate Instances: We will need to consider again two classes of predi-
cates, calledbinary object predicatesandbinary attributes predicates, re-
spectively.

Here, however, we will introduce substantive generalizations by permitting
the expression of ambiguity about the nature of the links, about the objects
that are related to a uniquely identified object-instance, or about the value
of the attribute of an object-instance.
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Instances of generalized object predicates will now be expressed by triples
such as

(Predicate, object-instance, Object-Set)

which state that a uniquely specified object instance is related, by a possi-
bly ambiguous object predicate, to some member ofObject-set . It is
important to note that it is not necessary to permit ambiguity in the speci-
fication of the second component since, as is well known, a many-to-many
relation may be specified as a collection of one-to-many relations.

Instances of generalized attribute predicates are now expressed by triples
such as

(Predicate, object-instance, Value-Set)

which specify that the value of a possibly ambiguous attribute of the speci-
fied object instance lies in the setValue-Set .

We will assume again that certain functions, defined in the setsPO andPA

of predicate instances, provide the rational bases to measure the admissi-
bility of database editing operations. As we will see below, however, these
functions are no longer similarity measures but, rather, nonsymmetricgen-
eralized orderfunctions.

(v) Data: The dataData is a tuple(DataO,DataA), whereDataO is a set of
generalized object-predicate instances andDataA is anonemptygeneralized
attribute-predicate instances. The only difference, albeit significant, with
our previous formulation lies in the ability to accommodate imprecision, ei-
ther as ambiguous related objects or as ambiguous property values, provided
by generalized object-predicate instances and attribute-predicate instances,
respectively. Furthermore, the first triple component, i.e.,Predicate ,
may itself be ambiguous.23

Generalized metrics Consideration of imprecision introduces significant dif-
ferences in the numeric structures employed to measure semantic differences be-
tween databases. Once again, it will be necessary to define, on a rational semantic

23We have chosen to capitalize the first letter of the termPredicate to indicate that now links
may be ambiguous.
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basis, the admissibility functionsAdO
P andAdA

P that measure the adequacy of ba-
sic database editing transformations. This definition will also be based on metric
structures defined now in the setsP̂O andP̂A of generalized object and attribute
predicate instances.

To facilitate understanding of the basic issues, we discuss first extensions to
the editing of generalized attribute predicates. We will assume now that there
exists a similarity functionSimL

P defined between pairs of attribute-predicates in
LeafL. This similarity function generalizes our previous metric that, in the case
of precise databases, was defined between any pair of predicates inPred.

We will assume now that for every leaf attribute-predicatel in LeafL, there
exists

1. A similarity functionSiml
O defined between pairs of objects inObj (i.e.,

a way to compare possible replacements of the second component of the
tuple)

2. A similarity functionSiml
A defined between pairs of leaf values in the set

LeafV (i.e., a way to compare possible replacements of the third component
of the tuple)

As we have previously noted, these metric structures provide the bases to de-
fine a similarity function between triples representing attribute-predicate instances
as

SimA
P( (l, o, v), (l′, o′, v′)) = SimL

P(l, l′) ∗�Sim(l,l′)
O (o, o′) ∗�Sim(l,l′)

A (v, v′) .

This definition, however, must now be generalized to provide a basis to de-
termine the admissibility of replacing a generalized attribute-predicate instance
(L, o, V ) by another(L′, o′, V ′), whereV andV ′ are subsets of a values and where
L andL′ are generalized predicates.

Clearly, the similarity functionSiml
A, defined between pairs of leaf, or atomic,

valuesv andv′ must be extended to a metric over pairs of value setsV andV ′.
Although it is possible to extend similarity structures defined over a set to metrics
defined over its power set (i.e., the set of all its subsets) by means of the well-
known Hausdorff distance [33], with the formula

SimH(V, V ′) = min [ I(V |V ′), I(V ′|V ) ] ,

whereI is the degree of inclusion function associated with the similarity function
Sim, it is important to remember that our objective is to characterize the extent
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to which it is admissible to replace, in a databaseD, a triple(L, o, V ) by another
triple (L′, o′, V ′).

As we will see below, this is a non-symmetric transformation—since, gener-
ally, the admissibility of replacing(L, o, V ) by (L′, o′, V ′) is not the same as that
of replacing(L′, o′, V ′) by (L, o, V ). As it turns out, we will only need to resort,
again, to degree-of-inclusion measuresI to derive the required admissibility costs.

We focus now, for the sake of explanation, on the simpler problem of replacing
only an imprecise valueV by another imprecise valueV ′ in a triple of the form
(l, o, V ), wherel is a precise predicate ando is a specific object (i.e., determining
the admissibility of replacing the triple(l, o, V ) by the triple(l, o, V ′)). To esti-
mate the extent to which it is acceptable to replace the third componentV by V ′,
we need to remember that the value-setV represents the best evidence as to the
nature of the actual valuev of the attributel of an objectO. Assuming now that
the “true value” of that attribute is the element (i.e. the leaf value)v of V , the
extent to whichV ′ is a proper description of the nature ofv is

max
v′∈V ′

Siml
A(v, v′) .

In other words, ifv were to lie actually inV ′, then it should be acceptable—
from a strictly truth-oriented perspective,24 despite a possible loss of information—
to say that the attributel of objectO lies in V ′. On the other hand, when every
v′ in V ′ is very different fromv, then all the valuesSiml

A(v, v′) are small and,
accordingly, the admissibility of representing the location ofv by V ′ is low.

On the basis of these considerations, since, in fact, we only know that the true
valuev lies inV , it is clear that the minimum possible degree of admissibility of
replacingV by V ′, is given by

min
v∈V

max
v′∈V ′

Siml
A(v, v′) = I l

A(V ′|V ) .

Note, in particular, that this expression indicates that it is admissible to replaceV
by another setV ′ that includes it although the opposite is not true. This lack of
symmetry is consistent with the meaning of the transformation (i.e., there is no
loss of “truth” in saying that a city lies in the United States when it is known that
it is in California but the converse statement is obviously false).

24It is important to remember that our editing transformations are not intended to eliminate
ambiguity but, rather, to produce a transformed database that matches the conditions imposed by
the pattern.
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We can now, generalize our characterization of the degree of similarity be-
tween instances of attribute predicates by the function

IA
P( (L, o, V ) | (L′, o′, V ′)) = min

l⇒L
max
l′⇒L′

[
SimL

P(l, l′) ∗�Sim(l,l′)
O (o, o′) ∗� I (l,l′)

A (V ′|V )
]
,

whereI (l,l′)
A is the degree of inclusion function associated with the similarity func-

tion Sim(l,l′)
A . The functionIA

P , not being symmetric, is not a similarity measure
but actually a generalizedorder function, that is, a reflexive and∗�-transitive func-
tion.

Turning our attention now to generalization, we will again assume that there
exists a similarity functionSimL

P defined between pairs of object-predicates in
LeafL and that, for every leaf object-predicatel in LeafL, there exists

1. A similarity functionSiml
O defined between pairs of objects inObj (i.e.,

a way to compare possible replacements of the second component of the
tuple)

2. A similarity functionŜim
l

O defined between pairs of objects inObj (i.e., a
way to compare possible replacements of the third component of the tuple)

By an argument identical to that employed above in the case of generalized
attribute-predicate instances we can now define the required order function as

IO
P ( (L, o1, O2) | (L′, o′1, O′2)) = min

l⇒L
max
l′⇒L′

[
SimL

P(l, l′) ∗�Sim(l,l′)
O (o1, o

′
1) ∗� Î

(l,l′)

O (O′2|O2) ,
]
,

wherêI
(l,l′)

O is the degree of inclusion function associated with the object-similarity

measureŜim
(l,l′)

O .
To complete our definition of similarity between predicate instances, we will

assume, as before, that, having rather different meanings, the similarity between
any generalized object-predicate instance and any generalized attribute-predicate
instance is zero.

Admissibility of basic editing operations We can now state formulas for the
admissibility of basic editing operations. The arguments leading to these expres-
sions are identical to that given earlier for precise predicate instances and will not
be repeated here.
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Addition of binary-predicate instances The admissibility of the basic editing
transformationE consisting of the addition of a generalized object-predicate triple
T of the form

T = ( Predicate,object 1,Object-set 2 ) ,

resulting in the replacement of a databaseD by the modified databaseD′ = D ∪
{T} is given by

Ad(E) = max
T ′∈D

IO
P(T |T ′) .

Correspondingly, the admissibility of the basic editing transformationE con-
sisting of the addition of a generalized attribute-predicate tripleT of the form

T = ( Predicate,object ,Value-set ) ,

resulting in the replacement of a databaseD by the modified databaseD′ = D ∪
{T} is given by

Ad(E) = max
T ′∈D

IA
P(T |T ′)

Deletion of binary-predicate instances The deletion of a predicate instance
from a databaseD results in a databaseD′ that is a subset of the transformed
database. These transformations are, as was previously the case, fully admissible,
that is,

Ad(E) = 1 ,

since there should not be any cost associated with disregarding information that
facilitates the matching between database and pattern.

Replacement of binary-predicate instances On the basis of arguments that are
identical to those given when discussing the replacement of an object-predicate
instancet by another object-predicate instancet′, the admissibility of the database
transformationE replacing a generalized object-predicate instanceT by another
object-predicate instanceT ′ is given by

Ad(E) = max
T ′′∈D

IO
P(T ′′|T ′) .

Similarly, when replacing a generalized attribute-predicate instanceT by a
generalized attribute-predicate instanceT ′, the admissibility of the corresponding
database transformationE is given by

Ad(E) = max
T ′′∈D

IA
P(T ′′|T ′) .
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