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Rapid Exploitation and Analysis of Documents

David Buttler David Andrzejewski Keith Stevens David Anastasiu Byron Gao

ABSTRACT
Analysts are overwhelmed with information. They have large archives
of historical data, both structured and unstructured, and continu-
ous streams of relevant messages and documents that they need to
match to current tasks, digest, and incorporate into their analysis.
The purpose of the READ project is to develop technologies to
make it easier to catalog, classify, and locate relevant information.
We approached this task from multiple angles. First, we tackle the
issue of processing large quantities of information in reasonable
time. Second, we provide mechanisms that allow users to cus-
tomize their queries based on latent topics exposed from corpus
statistics. Third, we assist users in organizing query results, adding
localized expert structure over results. Forth, we use word sense
disambiguation techniques to increase the precision of matching
user generated keyword lists with terms and concepts in the corpus.
Fifth, we enhance co-occurence statistics with latent topic attribu-
tion, to aid entity relationship discovery. Finally we quantitatively
analyze the quality of three popoular latent modeling techniques to
examine under which circumstances each is useful.

1. OVERVIEW
The analysis of unstructured and structured text documents is a
fundamental part of both government and business intelligence.
Most of the information analysts need to process information is
represented as text, including newspapers and web sites, scientific
articles in journals, and proprietary messages and analysis. The
amount of such information is staggering, with hundreds of mil-
lions of individual documents. Unfortunately, most analysts have
very few tools to evaluate this vast amount of unstructured data.
While there has been significant advances for new types of analytic
tools, such as Palantir 1, the most common tool used today by most
analysts is simple Boolean keyword search.

The project described here extends the capability of the the user in-
terfaces that analysts are accustomed to, enabling analysts to assess
the relevance of individual documents and find interesting docu-
ments from a massive document set.
1http://www.palantirtech.com/

There are several aspects of the project, each of which is described
below. The main theme is tying together multiple components to
create a unified interface that takes advantage of the latest in in-
formation retrieval research and systems software. We attempt to
address the following analyst problems: managing large number of
documents, and keeping everything accessible via search; coming
up with the right keywords to find targeted concepts or actors; or-
ganizing search results so that they are comprehensible; precisely
identifying concepts of interest without having to wade through
masses of unrelated terms; and searching by entity networks rather
than document sets. Finally we also examine some of the concep-
tual underpinnigs of our approach, measuring various alternatives
that can have a huge impact on the quality of the statistical sum-
mary information we both present to analysts to help them under-
stand a corpus and the various mechanisms we use to help them in
their search.

Infrastructure
Managing large corpora of documents is a difficult task. However,
recent years have seen significant advances in open-source soft-
ware infrastructure that makes the problem more tractable. The ma-
jor improvements include information retrieval software — specifi-
cally Lucene and Solr — and simplified distributed processing sys-
tems, such as the Hadoop Map/Reduce implementation.

Solr provides the infrastructure for querying large numbers of doc-
uments; it includes faceted search to allow users to refine their
search by different aspects of the corpus. However, the facets must
be generated and placed there by operators of the system. Creat-
ing those facets is often a processing intensive task requiring both
a global view of the corpus and the information in the text of the
local document. We use Map/Reduce to distribute the processing
load across a cluster to make the processing time tractable.

Enhanced Keyword Search
Another issue that comes up is assisting the user in understanding
a specialized and unfamiliar corpus. Typical search terms may be
less useful, and there are fewer standard external resources (con-
cept hierarchies, user query logs, links to wikipedia, etc.), that can
be leveraged to provide search guidance in internal information sys-
tems. In these cases we exploit statistical structure in the corpus to
enhance query strings, and to provide an overal gist for the corpus.

ClusteringWiki
As soon as a query is submitted, there are several things that can
be done to improve the result lists. Updated facet counts provide
one digested view of the results. Re-ranked documents, specialized
for a task, provide another view. Relevant latent topic themes give



another viewpoint. What these techniques lack is a user manipulat-
able means to organize the search results. The main mechanism that
user feedback has been incorporated in the Internet is through user
tagging, creating a folksonomy — a user created taxonomy with no
ridgid semantic rules. However, tagging individual documents can
be a cumbersome process that users will only participate in given
sufficient intrinsic incentive. I.e. users must obtain some value for
the effort they invest. Our mechanism, ClusteringWiki, al-
lows users to tag groups of documents that either naturally cluster
together, or are explicitly marked by users.

The system tries to find relevant similarities in query results, choos-
ing frequent phrases as the default label. By interacting with the de-
fault clustering, by renaming clusters, moving items between clus-
ters, or deleting items, users are implicitly making a large number
of taggings that can be re-used by others, or the same user, at a
later date. The incremental interactions of the users accrete over
time to provide a unique user-generated facet for the data. While
this type of content is an easy target for spam, and irrelevant noise
in a open Internet setting, it becomes much more relevant internal
to an organization, where limiting input to a small group of experts
and interested users alleviates many of these challenges.

Word Sense Disambiguation
While clustering results is one way of attacking polysemy, users of-
ten want to approach data from the other direction. Analysts spend
considerable time developing keyword lists, and other knowledge
artifacts that describe their domain of interests. These keyword
lists may be used to generate Boolean queries to search engines, or
they may be used in grep-like fashion to find relevant documents.
The main problem with this approach is that domain-specific words
have unrelated generic meanings. There are at least 72 unique
acronyms for the letters “or”; “lead” has a very popular common
meaning (e.g. “He is a leader of men”), as well as a useful scien-
tific meaning (“The atomic number of lead, Pb, is 82”).

While these examples may seem contrived, this comes up frequently
in practice. Any list that contains a term with a common meaning
becomes instantly less valuable. It is possible to remove terms with
common meanings, but this simply removes the possibily of finding
targeted usage of the desired terms. By examining the mechanics
of word sense disambiguation, we hope to provide a robust search
mechanism that provides fine-grained control – allowing the user to
more reliably detect specific meanings of terms, and provide con-
trol to the user (or system administrator) for the remaining trade-off
between precision and recall.

Topic Enhanced Entity Co-occurence
An alternate mechanism for exploring the information available is
to focus purely on the entities that occur in documents. Often the
ultimate goal is to find individuals or institutions that match some
search criteria (such as a person who is expert in a particular field,
or an organization involved in a particular activity). Analysts often
have a good idea for a starting point, and what they need to do is
develop a network of contacts and associations to help them gen-
erate a broader understanding of how a particular actor fits into the
larger picture.

Quantitative Comparisons of Topic Modeling Approaches
Topic modeling has become a popular way to discover themes and
structure in a corpus using unsupervised techniques. The basic idea
is not new: it is essentially a dimension reduction. Topic models
learn bags of similar words from a collection of documents. What

has happened over the past decade is that there are now several dif-
ferent mechanisms to create these latent topics, include LSA using
SVD or NMF, and LDA. Recently researchers have come up with
a user-validated mechanism to measure the semantic coherence of
LDA models algorithmicly. These coherence measures score in-
dividual topics so they can be ranked based on the semantic sim-
ilarity of topic words. As topic models play an increasingly large
role in enhanced information retrieval systems, particularly in the
techniques described above, understanding which topic models are
most appropriate for different tasks has become increasingly im-
portant. We apply two such metrics to three distinct topic modeling
approaches, and explore the differences. These new results have
significant implications for how we exploit the other techniques de-
scribed in this paper going forward.

2. INFRASTRUCTURE DEVELOPMENT AND
DEPLOYMENT

Traditionally, natural language processing systems were not de-
signed with any concern for scale. This comes from two under-
standable viewpoints: first, it is very expensive to develop ground
truth to validate various algorithms (named-entity recognition, rela-
tionship extraction, coreference resolution, etc.), resulting in small
training and test sets. Second, since the results were extremely
poor, there did not seem to be a need to scale the systems until
they could be deemed to be reliable enough for use. Coinciden-
tally, there are two major developments that have rendered those
concerns moot. First, the web has developed in such a way as
to present us with an enormous quantity of data; concurrently, re-
searchers and industry have leveraged this data to dramatically im-
prove the results of many types of algorithms. As a single example,
Google has shown stunningly accurate machine translation results
based on their collection and collation of billions of web pages in
different languages.

Several open source projects have started to take advantage of the
concurrent explosion in data and ideas for leveraging that data for
useful purposes. One of the earliest examples is the Lucene2 (and
later Solr3) search projects. Lucene provides an indexing and search
implementation; Solr extends that capabilities by providing faceted
capabilities and a web application container for the core search fea-
tures.

A second development has been the commoditization of Map/Reduce
distributed processing [28], and large-scale distributed file system
[38] by Hadoop4. The HBase5 project provides a large NoSQL key-
value storage system for the Hadoop file system that provides fast
access to hundreds of millions of records.

The Map/Reduce paradigm makes it trivial process hundreds of
millions of documents with methods designed for a limited set of
documents. We have taken several open source data processing
projects and changed their interfaces to operate over a single docu-
ment object presented in memory. These API’s can then be plugged
into Hadoop as simple map operators, and become flexible building
blocks for the larger system.

Prior to adopting Hadoop, we used a standard NFS filesystem, on

2http://lucene.apache.org
3http://lucene.apache.org/solr/
4http://hadoop.apache.org
5httpd://hbase.apache.org



a NetApp6 appliance, for our coreference [108] project. One of
the tasks we wanted to do is process the New York Times corpus
[101] for coreferent mentions. The first computer we tried running
the pipeline on was able to process a sentence at approximately the
same rate that the New York Times was publishing new sentences.
In addition, we used a fairly naive file format that worked very well
for a distributed team working on different system components, tar-
geted at standard test sets containing on the order of 1000 docu-
ments. Scaling up to the 1.8 million documents in the New York
Times corpus added a host of new issues, where a collection of six
to ten files per document became a serious impediment. While we
had a large cluster of over 100 machines to process the articles, they
were all kept in a single shared NFS mount. Launching processing
on each of the cluster nodes brought the file system to a standstill
– other users were outraged that they could not even list files in a
directory.

This experience led us to adopting HBase, which is based on BigTable[21],
as our storage architecture for the document set. HBase provides
a horizontally partitioned keyspace, automatically distributed and
balanced over the cluster. Each key can be associated with an ar-
bitrary set of columns. For convenience we restricted our columns
to the text of the documents and annotations over that text. This
allows us to incrementally process documents, with simple well
defined processes to add individual annotations, building up more
complex results at each stage.

This simple architecture is very powerful, and allows arbitrarily
complex processing to be broken down into a sequence of simple
steps. On a relatively new cluster of only 6 machines, we have
been able to process articles from 20 years of the New York Times
corpus in just a few hours.

The architecture is also very flexible. Each of the processing com-
ponents is designed to operate on a generic document record; this
means that to add a new source only requires a translation step to
convert documents from the orginal source into the generic record
format. Open source components, like Apache Tika 7 handle con-
verting standard document types into plain text and associated meta-
data. The only remaining requirement is data extraction for custom
sources (like ProMED mail 8), which must be dealt with by every
data management platform.

In summary, we are able to handle hundreds of millions of records,
and tens of terabytes on a small cluster. As with any Hadoop or
Solr cluster, there is a well defined and simple plan for expanding,
simply by adding more nodes to the cluster. The software han-
dles scaling to pretty much any conceivable size (FaceBook has a
cluster that manages over 21PB of data on 2000 machines [111,
16] 9). Solr provides a search platform to match the size of the
data, with the capability to distribute the index over the entire clus-
ter. It provides features, such as faceting, which we can exploit to
provide unique capabilities described elsewhere in this report. Just
getting these two capabilities working on relevant data allows huge
advances over the previous state of the art – capabilities that many
groups could profitably leverage.

The remaining sections are excerpts from published conference pa-
6http://netapp.com
7http://tika.apache.org
8http://www.promedmail.org
9http://hadoopblog.blogspot.com/2010/05/facebook-has-worlds-
largest-hadoop.html

pers that address each of the problems listed above. Section 3 cov-
ers enhanced keyword search; Section 4 covers clustering search
results; Section 5 covers techniques in word sense disambiguation;
Section 6 covers clustering entities and their relationships by topic;
finally, Section 7 discusses the choice of topic modeling approach,
a key component of many of the algorithms and technques dis-
cussed earlier.

3. ENHANCED KEYWORD SEARCH
We consider the problem of a user navigating an unfamiliar corpus
of text documents where document metadata is limited or unavail-
able, the domain is specialized, and the user base is small. These
challenging conditions may hold, for example, within an organi-
zation such as a business or government agency. We propose to
augment standard keyword search with user feedback on latent top-
ics. These topics are automatically learned from the corpus in an
unsupervised manner and presented alongside search results. User
feedback is then used to reformulate the original query, resulting in
improved information retrieval performance in our experiments.

3.1 Introduction
This work addresses the problem of ad hoc information retrieval
and text corpus navigation under the following conditions. First,
document metadata may be limited, unreliable, or nonexistent. Sec-
ond, the domain of the text documents is specialized, using vocabu-
lary ill-covered by general web documents or lexical resources such
as WordNet [79]. Finally, while the text corpus itself may be large,
the set of users accessing the corpus is not. This is an important
problem because these conditions can preclude the use of effective
information retrieval techniques such as faceted search or query log
mining. These conditions are different from those encountered in
general web or e-commerce search, but are realistic within organi-
zations which are trying make sense of large quantities of text, such
as private enterprises or government agencies.

A central problem in ad hoc information retrieval is that users may
not be able to formulate the “right” keyword combination in order
to retrieve the most relevant documents. Techniques such as real-
time query expansion [119] have been developed to directly attack
this problem, but often rely upon a dataset of previously submitted
queries, which may be sparse without a large user base. Another
approach is to solicit alternative types of user input. Faceted doc-
ument navigation [106] allows users to select documents based on
different attributes (e.g., publication venues or hierarchical subject
categories) and has emerged as a powerful complement to tradi-
tional keyword search. However, the standard assumption is that
the facets are manually defined, and that facet values for each doc-
ument are known.

Because of the challenging scenario we have defined, it is impor-
tant to exploit all available data. Latent topic models such as Latent
Dirichlet Allocation (LDA) [13] provide a means to take advantage
of the statistical structure of the corpus itself. LDA assumes that
observed documents have been generated by weighted mixtures of
unobserved (latent) topics. These topics are learned from the docu-
ments and often correspond to meaningful semantic themes present
in the corpus. LDA and its extensions have found interesting ap-
plications in fields such as natural language processing, computer
vision, and social networks analysis [10].

The contribution of this work is a new method for obtaining and ex-
ploiting user feedback at the latent topic level. Our approach is to
learn latent topics from the corpus and construct meaningful repre-



sentations of these topics. At query time, we then decide which la-
tent topics are potentially relevant and present the appropriate topic
representations alongside keyword search results. When a user se-
lects a latent topic, the vocabulary terms most strongly associated
with that topic are then used to augment the original query. Our
experiments with simulated user feedback show improved infor-
mation retrieval performance. The presentation of relevant topics
alongside search results also has the additional benefit of helping
the user to understand corpus themes related to the original key-
word query.

3.2 Related work
Our approach is partially motivated by the successes of faceted
search [123]. Castanet [106] and related systems [27] aim to auto-
matically construct facet hierarchies, but these techniques depend
crucially on the existence of a rich lexical resource such as Word-
Net [79]. While specialized ontologies or controlled vocabularies
have been constructed for some domains such as Gene Ontology
(GO) [110] and Medical Subject Headings (MeSH) [15], the con-
straints of our setting prohibit us from assuming the existence of
such a resource.

In light of this issue, topic models such as LDA have the advantage
of relying upon corpus statistics alone. Indeed, previous analy-
sis [81] of the digital library of the Open Content Alliance (OCA)
directly posited the analogy between latent topics and faceted sub-
jects, although specific mechanisms for exploiting this insight were
not explored. The Rexa academic search engine10 also displays
relevant latent topics as tags for a given research article, allow-
ing further investigation of the topics themselves. Another inter-
esting topic modeling approach uses seed words to learn facet-
oriented topics which can then be used to construct informative
summaries [70].

LDA has previously been used in information retrieval for both
document language model smoothing [118, 72] and query expan-
sion [88]. These techniques both exploit the dimensionality reduc-
tion provided by LDA “behind the scenes” in order to improve per-
formance, but do not leverage explicit user feedback in the way that
our approach does. The approach we propose in this work can be
viewed as complementary to these existing enhancements.

The BYU Topic Browser [37] provides an environment for rich ex-
plorations of learned LDA topics and how they relate to words and
documents within a corpus. However, the tasks supported are more
appropriate for advanced analysis by a relatively sophisticated user,
as opposed to a general search setting.

3.3 Our approach
We propose to present automatically learned topics alongside key-
word search results, allowing the user to provide feedback at the
latent topic level. While it is well-known that we can learn latent
topics with LDA, incorporating these topics into an information re-
trieval system requires us to address several questions. First, how
should these topics be presented? Previous user studies [106] have
found that users can become frustrated by raw LDA output. Sec-
ond, which topics should be presented for a given query? To avoid
overwhelming the user, we clearly cannot present all latent top-
ics (potentially hundreds or greater) for every query. Furthermore,
not all learned topics truly correspond to meaningful semantic con-
cepts, and the presence of these incoherent topics will not be ap-

10http://rexa.info/

preciated by users either. Third, how can we incorporate user latent
topic feedback into search results? Ideally, the mechanism used
should be simple and easy to integrate with existing search tech-
nologies. Finally, can this type of feedback improve information
retrieval performance, as measured by standard metrics?

We now describe our approach, beginning with a brief review of
latent topic modeling concepts and moving on to address the above
questions. All examples shown are actual learned topics from the
experimental datasets described in Table 5. In Section 3.4, exper-
imental results demonstrate that our approach can indeed achieve
performance gains.

3.3.1 Latent Dirichlet Allocation (LDA)
In LDA [13], it is assumed that observed words in each document
are generated by a document-specific mixture of corpus-wide la-
tent topics. We define our corpus of length N with the flat word
vector w = w1 . . . wN . At corpus position i, the element di in
d = d1 . . . dN designates the document containing observed word
wi. Similarly, the vector z = z1 . . . zN defines the hidden topic
assignments of each observed word. The number of latent topics
is fixed to some T , and each topic t = 1 . . . T is associated with
a topic-word multinomial φt over the W -word vocabulary. Each
φ multinomial is generated by a conjugate Dirichlet prior with pa-
rameter β. Each document j = 1 . . . D is associated with a multi-
nomial θj over T topics, which is also generated by a conjugate
Dirichlet prior with parameter α. The full generative model is then
given by

P (w, z, φ, θ | α, β,d) ∝ 
TY
t

p(φt|β)

! 
DY
j

p(θj |α)

! 
NY
i

φzi(wi)θdi(zi)

!
,

where φzi(wi) is the wi-th element in vector φzi , and θdi(zi) is
the zi-th element in vector θdi . Given an observed corpus (w,d)
and model hyperparameters (α, β), the typical modeling goal is to
infer the latent variables (z, φ, θ).

While exact LDA inference is intractable, a variety of approximate
schemes have been developed [82, 13, 109]. In this work, we use
Markov Chain Monte Carlo (MCMC) inference, specifically col-
lapsed Gibbs sampling [40]. This approach iteratively re-samples
a new value for each latent topic assignment zi, conditioned on the
current values of all other z values. After running this chain for a
fixed number of iterations, we estimate the topic-word multinomi-
als φ and the document-topic mixture weights θ from the final z
sample, using the means of their posteriors given by

φt(w) ∝ ntw + β

θj(t) ∝ njt + α

where ntw is the number of times word w is assigned to topic t,
and njt is the number of times topic t is used in document j, with
both counts being taken with respect to the final sample z. The
topic-word multinomials φt for each topic t are our learned topics;
each document-topic multinomial θd represents the prevalence of
topics within document d.



Table 1: Example learned topic-word multinomials φ from three different datasets (see Table 5). For each topic φt, the five highest-probability
words w are shown.

FT - Topic 1 WSJ - Topic 8 LA - Topic 94

Word w P (w|z) Word w P (w|z) Word w P (w|z)
court 0.080 technology 0.094 gun 0.058
case 0.025 research 0.054 weapons 0.052
legal 0.024 high 0.025 assault 0.034
ruling 0.018 development 0.023 guns 0.029
appeal 0.018 cray 0.020 rifles 0.018

Table 2: Features used to determine “best topic word” labels for
each topic. The topic-word posterior P (z = t|w) is computed
using Bayes Rule and a uniform prior over topics.

Description Score

Word probability f1(w) = P (w|z = t)
Topic posterior f2(w) = P (z = t|w)

PMI f3(w) =
P

w′∈Wt\w PMI(w,w′)

Conditional 1 f4(w) =
P

w′∈Wt\w P (w|w′)

Conditional 2 f5(w) =
P

w′∈Wt\w P (w′|w)

3.3.2 Topic representation
Typically, each learned topic-word multinomial φt is presented as a
“Top N” list of the most probable words for that topic, as shown for
three example learned topics in Table 1. We define the k-argmax
operator to yield the k arguments which result in the k largest val-
ues for the given function. We use this operator to define the ten
most probable words for topic t as Wt, given by the following ex-
pression with k = 10

Wt = k-argmax
w

φt(w)

We apply techniques from recent topic modeling research to im-
prove on this basic representation. Our post-processing of the learned
topics has three components: label generation, n-gram identifica-
tion, and capitalization recovery.

For topic labeling, we assume the availability of a reference cor-
pus containing themes similar to the target retrieval corpus. Since
only raw text is required, this should be considerably easier to ob-
tain than a full ontology, even for specialized domains. For exam-
ple, a user exploring a corpus related infectious disease outbreaks
could obtain a suitable reference corpus by crawling web resources
from the United States Centers for Disease Control and Prevention.
Since our experiments use general newswire corpora for evaluation,
we use Wikipedia11 as our reference corpus.

We label each topic using a simplified variant of the “Best Topic
Word” [62] method. For a given topic t, this method selects a sin-
gle word label from the top ten most probable words Wt, using
features designed to test how representative each word is of the
topic as a whole. We deviate slightly from Lau et al. to avoid
relying upon WordNet, selecting the label word by majority vote

11http://www.wikipedia.org

among five features shown in Table 2 where each feature fi casts
its vote for the highest scoring word and ties are broken arbitrar-
ily. Several of these features are computed from co-occurrence
frequencies among words in Wt, counted within ten-word sliding
windows taken over the reference corpus. Specifically, we com-
pute the pointwise mutual information (PMI) and conditional oc-
currence probabilities between each pair of words (w,w′) as

PMI(w,w′) = log
P (w,w′)

P (w)P (w′)

P (w|w′) =
P (w,w′)

P (w′)

where P (w,w′) is the probability of jointly observing w and w′

within a given sliding window, and P (w) is the probability of ob-
serving w within a sliding window. Several example labels can be
seen in the “label” column of Table 3.

We then identify statistically significant bigrams and trigrams (e.g.,
“White House”, “President Barack Obama”) for each topic using
an approach based on the Turbo Topics [11] algorithm. This ap-
proach considers adjacent word pairs (wi, wi+1) occurring in the
same document and assigned to the same topic (i.e., di = di+1

and zi = zi+1) and identifies pairs which occur much more often
than we would expect by chance alone, proceeding similarly for
trigrams. For each topic, we show the topic label along with the
most significant trigram, the two most significant bigrams and the
four most probable unigrams. Example latent topic representations
are shown in Table 3.

Finally, we restore capitalization to the topic n-grams before pre-
senting them to the user. As a pre-processing step, all text is con-
verted to lower-case before doing LDA inference. However, the
information conveyed by capitalization can ease user interpretation
of topics (e.g., by making proper names obvious). For each n-gram,
we simply count all occurrences of each possible capitalization oc-
curring in the original documents, and present the most frequent
version to the user.



Table 3: Topic representations for example high-PMI (coherent)
and low-PMI (incoherent) topics.

PMI Label n-grams

3.09 jurors Deputy Dist Atty
cross examination, closing arguments
trial, jury, case, testified

1.68 Petroleum state oil company
North Sea, natural gas
production, exploration, field, energy

-0.09 things (no trigrams found)
pretty good, years ago
ve, ll, time, don

-0.03 sales (no trigrams found)
year earlier, Feb Feb
December, March, month, rose

3.3.3 Topic selection
It will typically be necessary to learn at least hundreds of latent
topics in order to get suitably fine-grained topics for user feedback.
This makes it impractical to present all topics to the user after every
query; we therefore must decide which topics to present.

We use the idea of pseudo-relevance feedback [19] by assuming
that the top two documents returned by the original query q, which
we call Dq , are relevant. For each of these documents, we consider
the top k = 2 topics as determined by the topic weights θ to be
enriched topics for the user query. This constitutes a natural set of
candidates for latent topic feedback, and can be defined as

E =
[

d∈Dq

t θd(t).

However, we also show the user topics that are related to the en-
riched topic set E, but which may themselves not be present in the
highly ranked documents. We identify related topics by looking
for topics highly likely to co-occur with the enriched topics E, us-
ing the T × T topic covariance matrix Σ of the estimated D × T
document-topic θ matrix. Letting Σ(t1, t2) be the covariance be-
tween P (z = t1|d) and P (z = t2|d) computed over all documents
d = 1, . . . , D, we take the k = 2 topics with the highest covari-
ance with each of our enriched topics in E. We define this related
topic set as

R =
[
t∈E

t′ /∈ E Σ(t, t′).

The candidate topics for feedback are the union of the enriched and
related topics E∪R, but we perform a final filter before presenting
these topics to the user.

One hazard of presenting automatically discovered latent topics to
the user is the threat of incoherent “junk” topics which do not seem
to have a single clear theme. We filter out these topics using a re-
cently developed topic evaluation method [85, 84] which has been
shown to predict human topic quality judgments at nearly the inter-

annotator agreement rate. Similar to the topic labeling technique,
this method uses PMI values computed over a reference corpus
(again, we use Wikipedia), except that we now apply these scores
to the topics themselves. We compute the PMI score of a topic t as
the average PMI between all pairs of words within the top k = 10
most probable words Wt

PMI(t) =
1

k(k − 1)

X
(w,w′)∈Wt

PMI(w,w′).

Table 3 shows example high-PMI (coherent) and low-PMI (inco-
herent) latent topics.

We can use these PMI values to avoid confusing users with inco-
herent topics. Letting PMI25 be the 25th percentile PMI score
among all learned topics, we define our set of “dropped” topics D
as

D = {t|t ∈ E ∪R and PMI(t) < PMI25}.

We present the topics in {E ∪ R} \ D to the user alongside the
returned documents for the original keywords query q. Note that
the union operations and final filtering mean that the number of
topics actually presented to the user may vary from query to query.
Since we consider the top two topics within the top two documents,
along with each of their top two related topics, we will present a
maximum of (2×2)+(2×2×2) = 12 topics, minus set overlaps
and PMI-filtered topics.

3.3.4 Query expansion
If the user selects a topic as relevant, we reformulate the query by
combining the top ten most probable words Wt for that topic with
the original query q. To preserve the intent of the original query, we
use the Indri [77] #weight() operator to form a weighted com-
bination of the original query keywords and the highly probable
latent topic words. The weight parameter γ ∈ [0, 1] controls the
trade-off between the original query keywords and the latent topic
words. A larger γ value places more weight on the new latent topic
words, while setting γ = 0 is equivalent to the original keyword
query.

Each of the Nq words in the original query is given weight (1 −
γ)/Nq and each new topic t word w is given weight γ ∗ φ̃t(w),
where φ̃ is the re-normalized topic-word probability

φ̃t(w) =
φt(w)P

w′∈Wt
φt(w′)

.

While our implementation uses the Indri query language, it would
be straightforward to achieve similar results in other information
retrieval systems and frameworks (e.g., by using term boosting in
Apache Lucene12).

3.3.5 Example
12http://lucene.apache.org/



Table 4: A detailed example of our approach for the query “euro
opposition” on the Financial Times (FT) corpus. The strikethrough
topic 466 is not presented to the user due to low PMI coherence
score. The bolded topic 79 results in improved information retrieval
performance versus the baseline query: NDCG15 increases 0.22,
NDCG increases 0.07, and MAP increases 0.02. The prominent
term “Emu” appears to be an alternate form of the acronym “EMU”
commonly used in Financial Times articles.

Enriched topic Terms

196 (debate) Tory Euro sceptics
social chapter, Liberal Democrat
mps, Labour, bill, Commons

404 (ratification) ratification Maastricht treaty
Poul Schluter, Poul Rasmussen
Danish, vote, Denmark, ec

466 (business) PERSONAL FILE Born
years ago, past years
man, time, job, career

(a) Enriched topics E.

Related topic Terms

79 (Emu) economic monetary union
Maastricht treaty, member states
European, Europe, Community, Emu

377 (George) President George Bush, White House
Mr Clinton, administration
Democratic, Republican, Washington

115 (powers) de regulation bill
Sunday trading, Queen Speech
law, legislation, government, act

446 (years) chairman chief executive
managing director, finance director
Sir, board, group, company

431 (cabinet) Mr John Major
prime minister, Mr Major
party, tory, government, Conservative

(b) Related topics R.

We now walk through an example query for a corpus of news ar-
ticles from the Financial Times (FT). The query is “euro opposi-
tion”, and it targets documents discussing opposition to the intro-
duction of the single European currency. The corpus, query, and
relevance judgments used here are drawn from our experimental
dataset which will be used in Section 3.4. The number of topics
used is T = 500.

The enriched topics E shown in Table 5a consist of three distinct
topics: two topics related to the euro debate within the United
Kingdom and Denmark, and a confusing topic vaguely centered
around “business” which is dropped by our PMI filtering. Within
this topic, the interesting trigram “PERSONAL FILE Born” arises
from brief biographies sometimes found at the bottom of the arti-
cles.

High θ covariance with topics in E is then used to identify the five
related topicsR shown in Table 5b, which deal with various aspects
of business and politics. However the appearance of “economic
monetary union” and “Europe” in the topic 79 representation ap-
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Figure 1: ROC curve of baseline (dashed) versus topic 79 feedback
(solid) for the example query “euro opposition”.

pear highly related to the euro currency union, and indeed selecting
this topic as feedback improves retrieval results. Selecting topic 79
as user feedback and setting the feedback weight γ = 0.25, our ap-
proach produces an expanded query containing the most probable
words from topic 79

#weight(0.375 euro, 0.375 opposition,

0.031 European, ..., 0.015 Emu).

Using ground truth document relevance judgments, we can see that
documents returned by this expanded query have superior perfor-
mance on standard information retrieval measures as described in
the caption of Table 4. Figure 1 shows the receiver operating char-
acteristic (ROC) curves for the baseline query (dotted) and the ex-
panded topic 79 query (solid). Points on the ROC curve correspond
to the true positive rates (TPR) and false positive rates (FPR) for
sets of documents returned at different ranking thresholds. Here
we consider the true positive (TP) set to be the union of relevant
documents found within the top 500 documents returned by both
queries. This plot visually depicts a clear improvement in the rank-
ing of relevant documents. An additional benefit is that users are
given the opportunity to see and explore different aspects of “euro
opposition” such as the political dimension with respect to the United
Kingdom.

3.4 Experiments
To our knowledge there has been no attempt to use latent topics
as a user feedback mechanism in the way we have described. To
determine whether our approach could be genuinely useful in prac-
tice, we must answer several questions. First, can query expansion
with latent topic feedback improve the results of actual queries?
While previous work has found that latent topics align well with
existing document subject categories [81], it may be that these cat-
egories are more “topically coherent” than the relevant result sets
for ad hoc queries, and therefore more suitable for topic model-
ing. Second, assuming that for a given query there exists some
latent topic which would improve retrieval results, will the topic
selection approach described in Section 3.3.3 present it to the user?



Table 5: TREC datasets and queries (known within TREC as “top-
ics”) used in experimental evaluations. The number of documents
D is given in thousands and Q denotes the number of queries.

Corpus Abbrev D Q TREC topics

Associated Press AP 243 100 51-150
Financial Times FT 210 200 251-450
Los Angeles Times LA 128 150 301-450
Wall Street Journal WSJ 173 100 51-100

151-200
Federal Register FR 37 150 301-450
Foreign Broadcast FBIS 127 150 301-450
Information Service

Finally, there is a third question which we do not address in this
work: if presented with a helpful topic, will a user actually select
it? For the following experiments we make the simplifying assump-
tion that the user will always select the most helpful topic (with re-
spect to the information retrieval measure of interest) among those
presented. If no topic feedback will improve the set of returned
documents, we assume the user will not provide topic feedback.

3.4.1 Experiment setup
While the ultimate goal of this work is to improve search and navi-
gation under the specialized conditions described in Section 3.1, we
evaluate our approach by conducting information retrieval experi-
ments on several benchmark datasets from the Text REtrieval Con-
ference (TREC) [114], using Wikipedia as a reference corpus. Each
datasets consists of a corpus of text documents, a set of queries, and
relevance judgments for each query. For each query, the individual
words in the the title field are used as the baseline keyword query
(e.g., “Industrial Espionage” is broken up into “Industrial”, “Espi-
onage”). Table 5 shows dataset details.

For each corpus, we first apply the LDA model to learn a set of
latent topics, using the MALLET topic modeling toolkit [76]. We
pre-process documents by downcasing, removing numbers and punc-
tuation, applying a standard stopword list, and finally filtering out
rarely occurring terms to yield vocabulary sizes of between 10,000
and 20,000 terms. We run parallelized collapsed Gibbs inference
for 1,000 samples, re-estimating the document-topic hyperparame-
ter α every 25 samples. We learn T = 500 topics for each corpus
in our experimental dataset, except T = 250 for the significantly
smaller Federal Register (FR) corpus.

For all queries, we use the Galago [26] information retrieval sys-
tem with default settings to retrieve 500 documents. Galago uses
a query language and retrieval model based on Indri [77]. For the
topic-expanded queries we set γ = 0.25, based on trial-and-error
experimentation on held-aside preliminary development datasets.

3.4.2 Results
We calculate improvement over the baseline query with respect
to three information retrieval measures [26]: mean average preci-
sion (MAP), normalized discounted cumulative gain (NDCG), and
NDCG calculated with the first 15 results only (NDCG15). These
quantitative results are shown in Table 6, along with the average
number of feedback candidate topics shown to the user by our topic
selection technique (fewer than eight topics per query).

We now return to the experimental questions we had set out to an-
swer. These results demonstrate that latent topic feedback can in-
deed improve information retrieval results. Across evaluation mea-
sures, the results of approximately 40% of queries can be improved
by latent topic feedback. However, these gains are irrelevant if we
cannot identify potentially helpful topics and present them to the
user. Again across measures, we see that our topic selection ap-
proach is able present a helpful topic for more than 40% of the
queries for which there exists at least one helpful topic. Doing the
rough arithmetic, this means that for about 16% of the queries in
our experiment the user would be presented with at least one la-
tent topic which would improve the relevance of the returned doc-
uments. Furthermore, we stress that even for the “missed” queries
where presented topics do not provide quantitative relevance im-
provement, the corpus theme information conveyed may still be
beneficial.

To give a better feel for the nature of these results, Figure 2 shows
six queries along with helpful topics which were selected for pre-
sentation by our approach. In all cases, the connection between the
topic and the query is fairly clear, resulting in gains across retrieval
performance measures and visible improvement on ROC curves.

3.4.3 Analysis
First, we observe that for most queries (roughly 60%), there did not
exist a single latent topic for which feedback would enhance infor-
mation retrieval results. From manual inspection, this can occur
because either no learned topic is well-aligned with the relevant
documents, or because the results of the original query are good
and difficult to improve upon.

Second, for queries where there exists one or more topics which
would improve results, roughly 60% of the time our topic selec-
tion approach fails to select them. Minor variations on our topic
selection method (i.e., showing more topics) did not correct this –
many of the “missed” topics are not even close to making the cutoff.
Manual investigations reveal that, interestingly, these topics often
appear to be helpful because they are somewhat “distant” from the
original query and the top few baseline documents returned. At-
tempts to predict topic feedback gain using linear or logistic regres-
sion and features such as P (query|φt) were unsuccessful, although
more sophisticated approaches or richer features could possibly be
applied.

It is also instructive to further examine the impact of two key as-
pects of our topic selection procedure: the inclusion of related top-
ics and the exclusion of incoherent topics. For simplicity we will
discuss NDCG15 measurements, but similar results hold for MAP
and NDCG. Our selection approach recovers helpful topics for 133
out of 850 queries (15.6%) while presenting an average of 7.76 top-
ics to the user for each query.

If we do not use PMI to filter out topics suspected of being in-
coherent, the number of topics shown per query rises to 9.79, but
the number of queries for which helpful topics are presented only
increases to 143 out of 850 (16.8%). The presence of incoherent
topics may also impose cognitive burdens on the user, and it is un-
certain whether users would be able to successfully identify inco-
herent topics for feedback.



Table 6: Improvement from simulated latent topic feedback calculated only over queries where feedback improves performance. The “avg
shown” column indicates the average number of topics actually shown to the user as a result of the topic selection procedure described in
Section 3.3.3. For each query and evaluation measure, the “imprv” column shows the number of queries for which there exists at least one
latent topic which improves performance, “found” shows the number of queries for which a helpful topic is actually presented to the user by
our selection scheme, and “avg gain” shows the mean improvement when a helpful topic is presented to the user.

NCDG15 NCDG MAP

Corpus Q avg shown imprv found avg gain imprv found avg gain imprv found avg gain

AP 100 7.79 32 16 0.165 32 21 0.093 31 20 0.037
FT 200 7.47 97 43 0.238 138 80 0.134 137 72 0.041
LA 150 8.65 79 27 0.090 81 27 0.070 82 29 0.027

WSJ 100 7.73 29 16 0.205 30 18 0.050 29 18 0.026
FR 150 7.22 26 10 0.131 39 13 0.034 39 11 0.024

FBIS 150 7.78 62 21 0.163 64 25 0.037 67 29 0.024

If we were to omit the related topics R, it would decrease the aver-
age number of topics shown to 2.70, but it would decrease substan-
tially the number of queries for which a helpful topic is presented,
down to 93 out of 850 (10.9%). Also, we note that the presentation
of related topics is potentially useful for exploratory corpus search,
giving the user information about corpus themes “adjacent” to the
topics present in returned documents.

Taken together, these findings suggest that our topic selection pro-
cedure is reasonable. The inclusion of related topics considerably
increases the number of queries for which we present helpful topics
while presenting novel and possibly interesting corpus themes. The
filtering of suspect low-PMI topics does not discard many helpful
topics, and should spare users the ordeal of interpreting ill-defined
topics.

3.5 Discussion
In this work we have developed a novel technique for improving
text corpus search and navigation in difficult settings where we do
not have access to metadata, rich lexical resources, or large user
populations. This is an important problem because these conditions
make information retrieval more difficult, and are applicable within
organizations that have large quantities of internal text documents
which they wish to explore, analyze, and exploit.

To enhance search and exploration capabilities in this scenario, we
have developed an approach that gives users the ability to provide
feedback at the latent topic level. We leverage recent advances in
latent topic modeling in order to construct meaningful representa-
tions of latent topics while filtering out incoherent “junk topics”.
We propose a mechanism for deciding on a manageably small set
of topics to present to the user, as well as a method for constructing
expanded queries based on user topic feedback. Quantitative re-
sults on benchmark TREC datasets show that this technique can re-
sult in major improvements for a non-trivial proportion of queries.
Furthermore, the presentation of enriched and related topics along-
side search results can help to deliver insights about corpus themes,
which may be beneficial for knowledge discovery as well.

One potential obstacle to this approach is the scalability bottle-
neck presented by LDA topic inference. However, two factors
act to ameliorate these concerns. First, topics can be inferred “of-
fline” in advance; we do not need to do any expensive inference at
query-time. Second, there have been significant recent advances
along multiple fronts in scalable LDA inference. A distributed

system developed at Yahoo! is reported to process 42,000 docu-
ments per hour [103]. Alternatively, an online inference algorithm
for LDA [47] promises both improved scalability and a principled
means of updating topics to reflect new documents. In practice,
a hybrid system could update topics in an online fashion as docu-
ments are received, periodically performing distributed batch infer-
ence to refresh the learned topics.

3.6 Future work
There are several promising directions in which to extend this ap-
proach. Two obvious areas for improvement are increasing the pro-
portion of queries for which a helpful topic exists and improving
the selection method for presenting helpful topics to the user.

It may be possible to improve the alignment between learned topics
and user queries by the use of more sophisticated topic models such
as the Pachinko Allocation Model (PAM) [67]. While these models
were not found to be helpful for document smoothing [124], rich
hierarchical topics may be beneficial when combined with the ex-
plicit user feedback present in our approach. Our approach could
also exploit prior information such as predefined concepts by using
topic model variants which can incorporate domain knowledge [24,
5].

However, learning finer-grained topics can only increase the impor-
tance of carefully choosing which topics to show the user. Here it
may be instructive to consider the large body of research on “learn-
ing to rank” [71], as well as recent work in facet selection [68, 57].

The query expansion mechanism is another potential target for ex-
tension. If our underlying information retrieval system supports
phrase search terms (e.g., “White House”), it may be helpful to di-
rectly use discovered n-grams as well.

Further work could also compare the use of topics for explicit feed-
back in this work versus the implicit use of topics to improve doc-
ument language models in prior work [118]. It may be that the two
techniques could be combined profitably, with some topics being
more suitable for explicit feedback while others are better used for
smoothing.

Finally, another important step is to validate our user model as-
sumptions. One approach may be to directly evaluate information
retrieval performance using actual user feedback, for example via
Amazon Mechanical Turk [128]. It may also be interesting to ex-



plore the relationship between topic presentation (e.g., topic label-
ing strategies, whether to display n-grams) and user behavior.

4. A FRAMEWORK FOR PERSONALIZED
AND COLLABORATIVE CLUSTERING
OF SEARCH RESULTS

The way search results are organized and presented has a direct
and significant impact on the utility of search engines. The com-
mon strategy has been using a flat ranked list, which works fine for
homogeneous search results.

However, queries are inherently ambiguous and search results are
often diverse with multiple senses. With a list presentation, the
results on different sub-topics of a query will be mixed together.
The user has to sift through many irrelevant results to locate those
relevant ones.

With the rapid growth in the scale of the Web, queries have be-
come more ambiguous than ever. For example, there are more than
20 entries in Wikipedia for different well-known individuals un-
der the name of Jim Gray 13 and 74 entries for Michael Smith 14.
Consequently, the diversity of search results has increased to the
point that we must consider alternative presentations, providing ad-
ditional structure to flat lists so as to effectively minimize browsing
effort and alleviate information overload [45, 91, 125, 20]. Over
the years clustering has been accepted as the most promising alter-
native.

Clustering is the process of organizing objects into groups or clus-
ters that exhibit internal cohesion and external isolation. Based on
the common observation that it is much easier to scan a few topic-
coherent groups than many individual documents, clustering can be
used to categorize a long list of disparate search results into a few
clusters such that each cluster represents a homogeneous sub-topic
of the query. Meaningfully labeled, these clusters form a topic-
wise non-predefined, faceted search interface, allowing the user to
quickly locate relevant and interesting results. There is good ev-
idence that clustering improves user experience and search result
quality [74].

Given the significant potential benefits, search result clustering has
received increasing attention in recent years from the communities
of information retrieval, Web search and data mining. Many clus-
tering algorithms have been proposed [45, 91, 125, 126, 127, 59,
117, 65]. In the industry, well-known cluster-based commercial
search engines include Clusty15, iBoogie16 and CarrotSearch17.

Despite the high promise of the approach and a decade of endeavor,
cluster-based search engines have not gained prominent popularity,
evident by Clusty’s Alexa rank [48]. This is because clustering is
known to be a hard problem, and search result clustering is partic-
ularly hard due to its high dimensionality, complex semantics and
unique additional requirements beyond traditional clustering.

As emphasized in [117] and [20], the primary focus of search result
clustering is NOT to produce optimal clusters, an objective that has

13http://en.wikipedia.org/wiki/JamesGray
14http://en.wikipedia.org/wiki/MichaelSmith
15www.clusty.com
16www.iboogie.com
17carrotsearch.com

been pursued for decades for traditional clustering with many suc-
cessful automatic algorithms. Search result clustering is a highly
user-centric task with two unique additional requirements. First,
clusters must form interesting sub-topics or facets from the user’s
perspective. Second, clusters must be assigned informative, expres-
sive, meaningful and concise labels. Automatic algorithms often
fail to fulfill the human factors in the objectives of search result
clustering, generating meaningless, awkward or nonsense cluster
labels [20].

In this paper, we explore a completely different direction in tack-
ling the problem of clustering search results, utilizing the power
of direct user intervention and mass-collaboration. We introduce
ClusteringWiki, the first prototype and framework for per-
sonalized clustering that allows direct user editing of the cluster-
ing results. This is in sharp contrast with existing approaches that
innovate on the automatic algorithmic clustering procedure.

In ClusteringWiki, the user can edit and annotate the mem-
bership, structure and labels of clusters through a Wiki interface to
personalize her search result presentation. Edits and annotations
can be implicitly shared among users as a mass-collaborative way
of improving search result organization and search engine utility.
This approach is in the same spirit of the current trends in the Web,
like Web 2.0, semantic web, personalization, social tagging and
mass collaboration.

Clustering algorithms fall into two categories: partitioning and hi-
erarchical. Regarding clustering results, however, a hierarchical
presentation generalizes a flat partition. Based on this observation,
ClusteringWiki handles both clustering methods smoothly by
providing editing facilities for cluster hierarchies and treating parti-
tions as a special case. In practice, hierarchical methods are advan-
tageous in clustering search results because they construct a topic
hierarchy that allows the user to easily navigate search results at
different levels of granularity.

Figure 3 shows a snapshot of ClusteringWiki18. The left-hand
label panel presents a hierarchy of cluster labels. The right-hand
result panel presents search results for a chosen cluster label. A
logged-in user can edit the current clusters by creating, deleting,
modifying, moving or copying nodes in the cluster tree. Each edit
will be validated against a set of predefined consistency constraints
before being stored.

Designing and implementing ClusteringWiki poses non-trivial
technical challenges. User edits represent user preferences or con-
straints that should be respected and enforced next time the same
query is issued. Query processing is time-critical, thus efficiency
must be given high priority in maintaining and enforcing user pref-
erences. Moreover, complications also come from the dynamic na-
ture of search results that constantly change over time.

Cluster editing takes user effort. It is essential that such user effort
can be properly reused. ClusteringWiki considers two kinds
of reuse scenarios, preference transfer and preference sharing. The
former transfers user preferences from one query to similar ones,
e.g., from “David J. Dewitt" to “David Dewitt". The latter aggre-
gates and shares clustering preferences among users. Proper aggre-
gation allows users to collaborate at a mass scale and “vote" for the
best search result clustering presentation.

18dmlab.cs.txstate.edu/ClusteringWiki/index.html.



FBIS query 426
“law enforcement dogs”

Topic 321 (heroin)
seized kg cocaine
drug traffickers, kg heroin
police, arrested, drugs, marijuana

FBIS query 450
“King Hussein, peace”

Topic 293 (Amman)
Majesty King Husayn
al Aqabah, peace process
Jordan, Jordanian, Amman, Arab

WSJ query 86
“bank failures”

Topic 444 (FDIC)
Federal Deposit Insurance
William Seidman, Insurance Corp
banks, bank, FDIC, banking

NDCG15 NDCG MAP
+0.299 +0.065 +0.046

NDCG15 NDCG MAP
+0.708 +0.175 +0.171

NDCG15 NDCG MAP
+0.602 +0.121 +0.110
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AP query 127
“U.S.-U.S.S.R. Arms
Control Agreements”

Topic 232 (missile)
Strategic Defense Initiative
United States, arms control
treaty, nuclear, missiles, range

AP query 135
“Possible Contributions of
Gene Mapping to Medicine”

Topic 325 (called)
British journal Nature
immune system, genetically engineered
cells, research, researchers, scientists

AP query 113
“New Space Satellite
Applications”

Topic 237 (communications)
European Space Agency
Air Force, Cape Canaveral
satellite, launch, rocket, satellites

NDCG15 NDCG MAP
+0.296 +0.209 +0.105

NDCG15 NDCG MAP
+0.147 +0.040 +0.019

NDCG15 NDCG MAP
+0.237 +0.033 +0.007
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Figure 2: Six example queries with helpful topics and ROC curves. For each ROC curve, the set of true positive (TP) relevant documents is
considered to be the union of the relevant documents discovered (i.e., ranked within the top 500) by the baseline query (dashed line) and the
expanded query that incorporates latent topic feedback (solid line).

In social tagging, or collaborative tagging, users annotate Web ob-
jects, and such personal annotations can be used to collectively
classify and find information. ClusteringWiki extends con-
ventional tagging by allowing tagging of structured objects, which
are clusters of search results organized in a hierarchy.

Contributions.

• We introduce ClusteringWiki, the first framework for per-
sonalized clustering in the context of search result organization.
Unlike existing methods that innovate on the automatic cluster-
ing procedure, it allows direct user editing of the clustering re-



Figure 3: Snapshot of ClusteringWiki.

sults through a Wiki interface.

• In ClusteringWiki, user preferences are reused among sim-
ilar queries. They are also aggregated and shared among users
as a mass-collaborative way of improving search result organi-
zation and search engine utility.

• We implement a prototype for ClusteringWiki, perform ex-
perimental evaluation and a user study, and maintain the proto-
type as a public Web service.

4.1 Related Work
Clustering. Clustering is the process of organizing objects into
groups or clusters so that objects in the same cluster are as sim-
ilar as possible, and objects in different clusters are as dissimilar
as possible. Clustering algorithms fall into two main categories,
partitioning and hierarchical. Partitioning algorithms, such as k-
means [73], produce a flat partition of objects without any explicit
structure that relate clusters to each other. Hierarchical algorithms,
on the other hand, produce a more informative hierarchy of clusters
called a dendrogram. Hierarchical algorithms are either agglomer-
ative (bottom-up) such as AGNES [55], or divisive (top-down) such
as DIANA [55].

Clustering in IR. As a common data analysis technique, cluster-
ing has a wide array of applications in machine learning, data min-
ing, pattern recognition, information retrieval, image analysis and
bioinformatics [49, 32]. In information retrieval and Web search,
document clustering was initially proposed to improve search per-
formance by validating the cluster hypothesis, which states that
documents in the same cluster behave similarly with respect to rel-
evance to information needs [97].

In recent years, clustering has been used to organize search results,
creating a cluster-based search interface as an alternative presenta-
tion to the ranked list interface. The list interface works fine for
most navigational queries, but is less effective for informational
queries, which account for the majority of Web queries [17, 98].
In addition, the growing scale of the Web and diversity of search
results have rendered the list interface increasingly inadequate. Re-
search has shown that the cluster interface improves user experi-
ence and search result quality [45, 126, 112, 53].

Search result clustering. One way of creating a cluster interface
is to construct a static, off-line, pre-retrieval clustering of the entire
document collection. However, this approach is ineffective because
it is based on features that are frequent in the entire collection but
irrelevant to the particular query [39, 100, 20]. It has been shown
that query-specific, on-line, post-retrieval clustering, i.e., clustering
search results, produces much superior results [45].

Scatter/Gather [45, 91] was an early cluster-based document brows-
ing method that performs post-retrieval clustering on top-ranked
documents returned from a traditional information retrieval sys-
tem. The Grouper system [125, 126] (retired in 2000) introduced
the well-known Suffix Tree Clustering (STC) algorithm that groups
Web search results into clusters labeled by phrases extracted from
snippets. It was also shown that using snippets is as effective as us-
ing whole documents. Carrot2 (www.carrot2.org) is an open source
search result clustering engine that embeds STC as well as Lingo
[87], a clustering algorithm based on singular value decomposition.

Other related work from the Web, IR and data mining communi-
ties exists. [127] explored supervised learning for extracting mean-
ingful phrases from snippets, which are then used to group search
results. [59] proposed a monothetic algorithm, where a single fea-
ture is used to assign documents to clusters and generate cluster
labels. [117] investigated using past query history in order to bet-
ter organize search results for future queries. [65] studied search
result clustering for object-level search engines that automatically
extract and integrate information on Web objects. [20] surveyed
Web clustering engines and algorithms.

While all these methods focus on improvement in the automatic
algorithmic procedure of clustering, ClusteringWiki employs
a Wiki interface that allows direct user editing of the clustering
results.

Clustering with user intervention. In machine learning, cluster-
ing is referred to as unsupervised learning. However, similar to
ClusteringWiki, there are a few clustering frameworks that
involve an active user role, in particular, semi-supervised clustering
[8, 25] and interactive clustering [115, 50, 9] These frameworks are
also motivated by the fact that clustering is too complex, and it is
necessary to open the “black box" of the clustering procedure for
easy understanding, steering and focusing. However, they differ



from ClusteringWiki in that their focus is still on the cluster-
ing procedure, where they adopt a constraint clustering approach by
transforming user feedback and domain knowledge into constraints
(e.g., must-links and cannot-links) that are incorporated into the
clustering procedure.

Search result annotation. Prototypes that allow user editing and
annotation of search results exist. For example, U Rank by Mi-
crosoft 19 and Searchwiki by Google 20. Rants [36] implemented a
prototype with additional interesting features including the incor-
poration of both absolute and relative user preferences. Similar to
ClusteringWiki, these works pursue personalization as well as
a mass-collaborative way of improving search engine utility. The
difference is that they use the traditional flat list, instead of cluster-
based, search interface.

Tagging and social search. Social tagging, or collaborative tag-
ging, allows users to create and associate objects with tags as a
means of annotating and categorizing content. While users are pri-
marily interested in tagging for their personal use, tags in a commu-
nity collection tend to stabilize into power law distributions [43].
Collaborative tagging systems leverage this property to derive folk-
sonomies and improve search [121]. In ClusteringWiki users
tag clusters to organize search results, and the tags can be shared
and utilized in the same way as in collaborative tagging. Since clus-
ters are organized in a hierarchy, ClusteringWiki extends con-
ventional tagging by allowing tagging of structured objects. Similar
to tag suggestion in social tagging, the base clustering algorithm in
ClusteringWiki provides suggested phrases for tagging clus-
ters.

Social search is a mass-collaborative way of improving search per-
formance. In contrast to established algorithmic or machine-based
approaches, social search determines the relevance of search results
by considering the content created or touched by users in the social
graph. Example forms of user contributions include shared book-
marks or tagging of content with descriptive labels. Currently there
are more than 40 such people-powered or community-powered so-
cial search engines, including Eurekster Swiki 21, Mahalo 22, Wikia 23,
and Google social search 24. Mass collaboration, or crowdsourcing,
systems on the Web are categorized and discussed in [30].

4.2 Overview
In this section, we overview the main architecture and design prin-
ciples of ClusteringWiki. Figure 4 shows the two key mod-
ules. The query processing module takes a query q and a set of
stored user preferences as input to produce a cluster tree T that re-
spects the preferences. The cluster editing module takes a cluster
tree T and a user edit e as input to create/update a set of stored user
preferences. Each user editing session usually involves a series of
edits. The processing-editing cycle recurs over time.

Query processing. ClusteringWiki takes a query q from a

19research.microsoft.com/en-us/projects/urank
20googleblog.blogspot.com/2008/11/searchwiki-make-search-
your-own.html

21www.eurekster.com
22www.mahalo.com
23answers.wikia.com/wiki/Wikianswers
24googleblog.blogspot.com/2009/10/introducing-google-social-
search-i.html

Figure 4: Main architecture of ClusteringWiki.

user u and retrieves the search results R from a data source (e.g.,
Google). Then, it clusters R with a default clustering algorithm
(e.g., frequent phrase hierarchical) to produce an initial cluster tree
Tinit. Then, it applies P , an applicable set of stored user prefer-
ences, to Tinit and presents a modified cluster tree T that respects
P .

Note that ClusteringWiki performs clustering. The modifica-
tion should not alter R, the input data.

If the user u is logged-in, P will be set to Pq,u, a set of preferences
for q previously specified by u. In case Pq,u = ∅, Pq′,u will be
used on condition that q′ is sufficiently close to q. If the user u is
not logged-in, P will be set to Pq,U , a set of aggregated preferences
for q previously specified by all users. In case Pq,U = ∅, Pq′,U will
be used on condition that q′ is sufficiently close to q.

In the cluster tree T , the internal nodes, i.e., non-leaf nodes, contain
cluster labels and are presented on the left-hand label panel. Each
label is a set of keywords. The leaf nodes contain search results,
and the leaf nodes for a selected label are presented on the right-
hand result panel. A search result can appear multiple times in T .
The root of T represents the query q itself and is always labeled
with All. When it is chosen, all search results will be presented
on the result panel. Labels other than All represent the various,
possibly overlapping, sub-topics of q. When there is no ambiguity,
internal node, label node, cluster label and label are used inter-
changeably in the paper. Similarly, leaf node, result node, search
result and result are used interchangeably.

Cluster editing. If logged-in, a user u can edit the cluster tree T
for query q by creating, deleting, modifying, moving or copying
nodes. User edits will be validated against a set C of consistency
constraints before being written to Pq,u.

The set C contains predefined constraints that are specified on, for
example, the size of clusters, the height of the tree and the length of
labels. These constraints exist to maintain a favorable user interface
for fast and intuitive navigation. The cluster tree T is consistent if
it satisfies all the constraints in C.

By combining preferences in Pq,u for all users who have edited
the cluster tree T for query q, we obtain Pq,U , a set of aggregated
preferences for query q. We use Pu to denote the collection of
clustering preferences by user u for all queries, which is a set of
sets of preferences such that ∀q, Pq,u ∈ Pu. We also use PU to
denote the collection of aggregated preferences by all users for all
queries, which is a set of sets of aggregated preferences such that
∀q, Pq,U ∈ PU . Pu and PU are maintained over time and used by
ClusteringWiki in processing queries for the user u.



Design principles. In a search result clustering engine, there are
significant uncertainties from the data to the clustering algorithm.
Wiki-facilitated personalization further adds substantial complica-
tions. Simplicity should be a key principle in designing such a
complex system. ClusteringWiki adopts a simple yet power-
ful path approach.

With this approach, a cluster tree T is decomposed into a set of
root-to-leaf paths that serve as independent editing components. A
path always starts with All (root) and ends with some search result
(leaf). In ClusteringWiki, maintenance, aggregation and en-
forcement of user preferences are based on simple path arithmetic.
Moreover, the path approach is sufficiently powerful, being able to
handle the finest user preference for a cluster tree.

In particular, each edit of T can be interpreted as operations on
one or more paths. There are two primitive operations on a path p,
insertion of p and deletion of p. A modification of p to p′ is simply
a deletion of p followed by an insertion of p′.

For each user u and each query q, ClusteringWiki maintains
a set of paths Pq,u representing the user edits from u for query q.
Each path p ∈ Pq,u can be either positive or negative. A positive
path p represents an insertion of p, meaning that the user prefers to
have p in T . A negative path−p represents a deletion of p, meaning
that the user prefers not to have p in T . Two opposite paths p and
−p will cancel each other out. The paths in Pq,u may be added
from multiple editing sessions at different times.

To aggregate user preferences for query q, ClusteringWiki
first combines the paths in all Pq,u, u ∈ U , where U is the set
of users who have edited the cluster tree of q. Then, certain statis-
tically significant paths are selected and stored in Pq,U .

Suppose in processing query q, P is identified as the applicable set
of paths to enforce. ClusteringWiki first combines the paths
in P and the paths in Tinit, where Tinit is the initial cluster tree.
Then, it presents the combined paths as a tree, which is the cluster
tree T . The combination is straightforward. For each positive p ∈
P , if p /∈ Tinit, add p to Tinit. For each negative p ∈ P , if
p ∈ Tinit, remove p from Tinit.

Reproducibility. It is easy to verify that ClusteringWiki has
the property of reproducing edited cluster trees. In particular, after
a series of user edits on Tinit to produce T , if Tinit remains the
same in a subsequent query, exactly the same T will be produced
after enforcing the stored user preferences generated from the user
edits on Tinit.

4.3 Framework
In this section, we introduce the ClusteringWiki framework
in detail. In particular, we present the algorithms for the query pro-
cessing and cluster editing modules and explain their main compo-
nents.

4.3.1 Query Processing
Algorithm 1 presents the pseudocode for the query processing al-
gorithm of ClusteringWiki. In the input, Pu and PU are used
instead of Pq,u and Pq,U for preference transfer purposes. In pro-
cessing query q, it is likely that Pq,u = ∅ or Pq,U = ∅; then some
applicable Pq′,u ∈ Pu or Pq′,U ∈ PU can be used. The creation
and maintenance of such user preferences will be discussed in Sec-

Algorithm 1 Query processing
indent = 1em
Input: q, u, C, Pu and PU : q is a query. u is a user. C is a set

of consistency constraints. Pu is a collection of preferences by
user u for all queries, where ∀q, Pq,u ∈ Pu. PU is a collection
of aggregated preferences for all queries, where ∀q, Pq,U ∈
PU .

Output: T : a consistent cluster tree for the search results of query
q.

1: retrieve a set R of search results for query q;
2: cluster R to obtain an initial cluster tree Tinit;
3: P ← ∅; //P is the set of paths to be enforced on Tinit

4: if (u is logged-in) then
5: q′ ← Trans(q, u);
6: if (q′ 6= NULL) then
7: P ← Pq′,u; //use applicable personal preferences
8: end if
9: else

10: q′ ← Trans(q, U);
11: if (q′ 6= NULL) then
12: P ← Pq′,U ; //use applicable aggregated preferences
13: end if
14: end if
15: T ← Tinit; //initialize T , the cluster tree to present
16: clean P ; //remove p ∈ P if its result node is not in R
17: for each p ∈ P
18: if (p is positive) then
19: T ← T ∪ {p}; //add a preferred path
20: else
21: T ← T − {p}; //remove a non-preferred path
22: end if
23: end for
24: trim(T,C); //make T consistent
25: present(T ); //present the set of paths in T as a tree

tion 4.3.2. The output of the algorithm is a consistent cluster tree
T .

Retrieving search results. Line 1 retrieves a setR of search results
for query q from a chosen data source. The size of R is set to 50
by default and adjustable to up to 500. The available data sources
include Google and Yahoo! Search APIs among others (see Section
4.4 for details). ClusteringWiki retrieves the results via multi-
threaded parallel requests, which are much faster than sequential
requests.

The combined titles and snippets of search results retrieved from
the sources are preprocessed. In order to extract phrases, we im-
plemented our own tokenizer that identifies whether a token is a
word, numeric, punctuation mark, capitalized, all caps, etc. We
then remove non-textual tokens and stop words, using the stop word
list from the Apache Snowball package 25. The tokens are then
stemmed using the Porter 26 algorithm and indexed as terms. For
each term, document frequency and collection frequency are com-
puted and stored. A numeric id is also assigned to each term in
the document collection in order to efficiently calculate document
similarity, identify frequent phrases, etc.

25www.docjar.com/html/api/org/apache/lucene/analysis/snowball/SnowballAnalyzer.java.html
26tartarus.org/ martin/PorterStemmer/



Building initial tree. Line 2 builds an initial cluster tree Tinit

with a built-in clustering algorithm. ClusteringWiki provides
4 such algorithms: k-means flat, k-means hierarchical, frequent
phrase flat and frequent phrase hierarchical. The hierarchical algo-
rithms recursively apply their flat counterparts in a top-down man-
ner to large clusters.

The k-means algorithms follow a strategy that generates clusters
before labels. They use a simple approach to generate cluster labels
from titles of search results that are the closest to cluster centers. In
order to produce stable clusters, the typical randomness in k-means
due to the random selection of initial cluster centers is removed.
The parameter k is heuristically determined based on the size of
the input.

The frequent phrase algorithms follow a strategy that generates la-
bels before clusters. They first identify frequent phrases using a
suffix tree built in linear time by Ukkonen’s algorithm. Then they
select labels from the frequent phrases using a greedy set cover
heuristic, where at each step a frequent phrase covering the most
uncovered search results is selected until the whole cluster is cov-
ered or no frequent phrases remain. Then they assign each search
result r to a label L if r contains the keywords in L. Uncovered
search results are added to a special cluster labeled Other. These
algorithms are able to generate very meaningful cluster labels with
a couple of heuristics. For example, a sublabel cannot be a subset
of a superlabel, in which case the sublabel is redundant.

ClusteringWiki smoothly handles flat clustering by treating
partitions as a special case of trees. The built-in clustering algo-
rithms are meant to serve their basic functions. The focus of the
paper is not to produce, but to modify, the initial cluster trees.

Determining applicable preferences. Lines 3 ∼ 14 determine P ,
a set of applicable paths to be enforced on Tinit. Two cases are
considered. If the user u is logged-in, P will use some set from Pu

representing personal preferences of u (lines 4 ∼ 8). Otherwise,
P will use some set from PU representing aggregated preferences
(lines 9 ∼ 14). The subroutine Trans() determines the actual set
to use if any.

The pseudocode of Trans(q, u) is presented in Algorithm 2. Given
a user u and a query q, it returns a query q′, whose preferences
stored in Pq′,u are applicable to query q. In the subroutine, two
similarity measures are used. Term similarity, termSim(q, q′), is
the Jaccard coefficient that compares the terms of q and q′. Result
similarity, resultSim(q, q′), is the Jaccard coefficient that com-
pares the URLs of the top k (e.g., k = 10) results of q and q′.
This calculation requires that the URLs of the top k results for q′

be stored.

To validate q′, both similarity values need to pass their respective
thresholds δts and δrs. Obviously, the bigger the thresholds, the
more conservative the transfer. Setting the thresholds to 1 shuts
down preference transfer. Instead of thresholding, another reason-
able way of validation is to provide a ranked list of similar queries
and ask the user for confirmation.

The subroutine in Algorithm 2 first checks if Pq,u exists (line 1).
If it does, preference transfer is not needed and q is returned (line
2). In this case, u has already edited the cluster tree for query q and
stored the preferences in Pq,u.

Algorithm 2 Trans(q, u)
indent = 1em
Input: q, u and Pu: q is a query. u is a user. Pu is a collection of

preferences by user u for all queries, where ∀q, Pq,u ∈ Pu.
Output: q′: a query such that Pq′,u is applicable for q.
1: if (Pq,u exists) then
2: return q; //u has edited the cluster tree of q
3: else
4: find q′ s.t. Pq′,u ∈ Pu ∧ termSim(q, q′) is the largest;
5: if termSim(q, q′) ≥ δts then //δts is a threshold
6: if resultSim(q, q′) ≥ δrs then //δrs is a threshold
7: Pq,u ← Pq′,u; //copy preferences from q′ to q
8: return q′;
9: end if

10: end if
11: end if
12: return NULL;

Otherwise, the subroutine tries to find q′ such that Pq′,u is applica-
ble (lines 4 ∼ 11). To do so, it first finds q′ such that Pq′,u exists
and termSim(q, q′) is the largest (line 4). Then, it continues to
validate the applicability of q′ by checking if termSim(q, q′) and
resultSim(q, q′) have passed their respective thresholds (lines 5
sim 6). If so, user preferences for q′ will be copied to q (line 7),
and q′ will be returned (line 8). Otherwise,NULLwill be returned
(line 11), indicating no applicable preferences exist for query q.

The preference copying (line 7) is important for the correctness
of ClusteringWiki. Otherwise, suppose there is a preference
transfer from q′ to q, where Pq,u = ∅ and Pq′,u has been applied on
Tinit to produce T . Then, after some editing from u, T becomes T ′

and the corresponding edits are stored in Pq,u. Then, this Pq,u will
be used the next time the same query q is issued by u. However,
Pq,u will not be able to bring an identical Tinit to the expected
T ′. It is easy to verify that line 7 fixes the problem and ensures
reproducibility.

Trans(q, U) works in the same way. Preference transfer is an im-
portant component of ClusteringWiki. Cluster editing takes
user effort and there are an infinite number of queries. It is essen-
tial that such user effort can be properly reused.

Enforcing applicable preferences. Back to Algorithm 1, lines 15
∼ 23 enforce the paths of P on Tinit to produce the cluster tree T .
The enforcement is straightforward. First P is cleaned by removing
those paths whose result nodes are not in the search result set R
(line 16). Recall that ClusteringWiki performs clustering. It
should not alter the input data R. Then, the positive paths in P are
the ones u prefers to see in T , thus they are added to T (lines 18 ∼
19). The negative paths in P are the ones u prefers not to see in T ,
thus they are removed from T (lines 20 ∼ 21). If P = ∅, there are
no applicable preferences and Tinit will not be modified.

Trimming and Presenting T . The cluster tree T must satisfy a set
C of predefined constraints. Some constraints maybe violated after
applying P to Tinit. For example, adding or removing paths may
result in small clusters that violate constraints on the size of clus-
ters. In line 24, subroutine trim(T,C) is responsible for making
T consistent, e.g., by re-distributing the paths in the small clusters.
We will discuss the constraint set C in detail in Section 4.3.2.



In line 25, subroutine present(T ) presents the set of paths in T as
a cluster tree on the search interface. The labels can be expanded
or collapsed. The search results for a chosen label are presented
in the result panel in their original order when retrieved from the
source. Relevant terms corresponding to current and ancestor labels
in search results are highlighted.

Sibling cluster labels in the label panel are ordered by lexicographi-
cally comparing the lists of original ranks of their associated search
results. For example, let A and D be two sibling labels as in Fig-
ure 5, where A contains P1, P2, P3 and P4 and D contains P1 and
P5. Suppose that i in Pi indicates the original rank of Pi from the
source. By comparing two lists < 1, 2, 3, 4 > and < 1, 5 >, we
put A in front of D. “Other" is a special label that is always listed
at the end behind all its siblings.

Discussion. As [54] suggested, the subset of web pages visited
by employees in an Enterprise is centered around the company’s
business objectives. Additionally, employees share a common vo-
cabulary describing the objects and tasks encountered in day to day
activities. ClusteringWiki can be even more effective in this
environment as user preferences can be better aggregated and uti-
lized.

4.3.2 Cluster Editing
Before explaining the algorithm handling user edits, we first intro-
duce the essential consistency constraints for cluster trees and the
primitive user edits.

Essential consistency constraints. Predefined consistency con-
straints exist to maintain a favorable user interface for fast and in-
tuitive navigation. They can be specified on any structural compo-
nent of the cluster tree T . In the following, we list the essential
ones.

• Path constraint: Each path of cluster tree T must start with the
root labeled All and end with a leaf node that is a search result.
In case there are no search results returned, T is empty without
paths.

• Presence constraint: Each initial search result must be present in
T . It implies that deletion of paths should not result in absence
of any search result in T .

• Homogeneity constraint: A label node in T must not have het-
erogeneous children that combine cluster labels with search re-
sults. This constraint is also used in other clustering engines such
as Clusty and Carrot2.

• Height constraint: The height of T must be equal or less than a
threshold, e.g., 4.

• Label length constraint: The length of each label in T must be
equal or less than a threshold.

• Branching constraint: We call a label node a bottom label node
if it directly connects to search results. Each non-bottom label
node must have at least Tn children. Each non-special bottom
label node must have at least Tm children. Other is a special
bottom label node that may have less than Tm children. All,
when being a bottom label, could also have less than Tm children
in case there are insufficient search results. By default both Tn

and Tm are set to 2 in ClusteringWiki as in Clusty.

Figure 5: Example cluster tree.

Primitive user edits. ClusteringWiki implements the follow-
ing categories of atomic primitive edits that a logged-in user can
initiate in the process of tree editing. Each edit e is associated with
Pe and NPe, the set of paths to be inserted to the tree and the set
of paths to be deleted from the tree after e.

• e1: copy a label node to another non-bottom label node as its
child. Note that it is allowed to copy a parent label node to a
child label node.

Example: in Figure 5, we can copy D to A. For this edit, Pe =
{All → A→ D → P1, All → A→ D → P5}. NPe = ∅ for
any edit of this type.

• e2: copy a result node to a bottom label node.

Example: in Figure 5, we can copy P3 to D, but not to A, which
is not a bottom label node. For this edit, Pe = {All → D →
P3}. NPe = ∅ for any edit of this type.

• e3: modify a non-root label node.

Example: in Figure 5, we can modify D to E. For this edit,
Pe = {All→ E → P1, All→ E → P5} and NPe = {All→
D → P1, All→ D → P5}.

• e4: delete a non-root node, which can be either a label node or a
result node.

Example: in Figure 5, we can delete P5. For this edit, NPe =
{All→ D → P5}. Pe = ∅ for any edit of this type.

• e5: create a label node, which can be either a non-bottom or bot-
tom label node. In particular, recursive creation of non-bottom
labels is a way to add levels to cluster trees.

Example: in Figure 5, we can add E as parent of D. For this
edit, Pe = {All→ E → D → P1, All→ E → D → P5} and
NPe = {All→ D → P1, All→ D → P5}.

The editing framework results in several favorable properties. Firstly,
the primitive user edits are such that, with a series of edits, a user
can produce any consistent cluster tree. Secondly, since e1 only
allows a label node to be placed under a non-bottom node and e2
only allows a result node to be placed under a bottom node, the
homogeneity constraint will not be violated after any edit given the
consistency of T before the edit. Thirdly, the framework uses ea-
ger validation, where validation is performed right after each edit,
compared to lazy validation, where validation is performed in the
end of the editing process. Eager validation is more user-friendly
and less error-prone in implementation.

Note that, user editing can possibly generate empty labels, i.e., la-
bels that do not contain any search results and thus not on any path.
Such labels will be trimmed.



Algorithm 3 Cluster editing
indent = 1em
Input: q, u, T , C, Pq,u, Pq,U and e: q is a query. u is a user. T is

a cluster tree for q. C is a set of consistency constraints for T .
Pq,u is a set of paths representing the preferences by u for q.
Pq,U is a set of paths representing the aggregated preferences
for q. e is an edit by u on T .

Output: updated T , Pq,u and Pq,U

1: if (pre-validation fail) then
2: return;
3: end if
4: identify Pe;
5: identify NPe;
6: if (validation fail) then
7: return;
8: end if
9: update T ;

10: add Pe as positive paths to Pq,u;
11: add NPe as negative paths to Pq,u;
12: update Pq,U ;

To add convenience, ClusteringWiki also implements several
other types of edits. For example, move (instead of copy as in e1)
a label node to another non-bottom label node as its child, or move
(instead of copy as in e2) a result node to a bottom label node. Such
a move edit can be considered as a copy edit followed by a delete
edit.

Editing algorithm. Algorithm 3 presents the pseudocode of the
cluster editing algorithm in ClusteringWiki for a single edit
e, where e can be any type of edit from e1 to e4.

Lines 1∼ 3 perform pre-validation of e to see if it is in violation of
consistency constraints. Violations can be caught early for certain
constraints on certain edits, for example, the label length constraint
on e1 type of edits. If pre-validation fails, the algorithm returns
immediately.

Otherwise, the algorithm continues with lines 4 ∼ 5 that identify
Pe and NPe. Then, lines 6∼ 8 perform full validation of e against
C, the set of consistency constraints. If the validation fails, the
algorithm returns immediately.

Otherwise, e is a valid edit and T is updated (line 9). Then, the
personal user preferences are stored by adding Pe andNPe to Pq,u

as positive paths and negative paths respectively (lines 10∼ 11). In
adding these paths, the opposite paths in Pq,u cancel each other out.
In line 12, the aggregated preferences stored in Pq,U are updated.
We further discuss preference aggregation in the following.

Preference sharing. Preference sharing in ClusteringWiki
is in line with the many social-powered search engines as a mass-
collaborative way of improving search utility. In ClusteringWiki,
U is considered as a special user and Pq,U stores the aggregated
user preferences.

In particular, we use P 0
q,U to record the paths specified for query q

by all users. Each path p ∈ P 0
q,U has a count attribute, recording

the total number of times that p appears in any Pq,u. All paths
in P 0

q,U are grouped by leaf nodes. In other words, all paths that

end with the same search result are in the same group. For each
group, we keep track of two best paths: a positive one with the
most count and a negative one with the most count. We mark a
best path if its count passes a predefined threshold. All the marked
paths constitute Pq,U , the set of aggregated paths that are used in
query processing. Note that, here ClusteringWiki adopts a
conservative approach, making use of at most one positive path and
one negative path for each search result.

Editing interface. Cluster editing in ClusteringWiki is pri-
marily available through context menus attached to label and result
nodes. Context menus are context aware, displaying only those op-
erations that are valid for the selected node. For example, the paste
result operation will not be displayed unless the selected node is
a bottom label node and a result node was previously copied or
cut. This effectively implements pre-validation of cluster edit op-
erations by not allowing the user to choose invalid tasks.

Users can drag and drop a result node or cluster label in addition
to cutting/copying and pasting to perform a move/copy operation.
A label node will be tagged with an icon if the item being dragged
can be pasted within that node. An item that is dropped outside a
label node in which it could be pasted simply returns to its original
location.

4.4 Evaluation
ClusteringWiki was implemented as an AJAX-enabled Java
Enterprise Edition 1.5 application. The prototype is maintained on
an average PC with Intel Pentium 4 3.4 GHz CPU and 4Gb RAM
running Apache Tomcat 6.

4.4.1 Methodology and Metrics
We performed two series of experiments: system evaluation and
utility evaluation. The former focused on the correctness and ef-
ficiency of our implemented prototype. The latter, our main ex-
periments, focused on the effectiveness of ClusteringWiki in
improving search performance.

Data sources.
Multiple data sources were used in our empirical evaluation, in-
cluding Google AJAX Search API 27, Yahoo! Search API 28, and
local Lucene indexes built on top of the New York Times Anno-
tated Corpus [102] and several datasets from the TIPSTER (disks
1-3) and TREC (disks 4-5) collections 29. The Google API can re-
trieve a maximum of 8 results per request and a total of 64 results
per query. The Yahoo! API can retrieve a maximum of 100 results
per request and a total of 1000 results per query. Due to user licence
agreements, the New York Times, TIPSTER and TREC datasets are
not available publicly.

System evaluation methodology.
For system evaluation of ClusteringWiki, we focused on cor-
rectness and efficiency. We tested the correctness by manually ex-
ecuting a number of functional and system tests designed to test
every aspect of application functionality. These tests included clus-
ter reproducibility, edit operation pre-validations, cluster editing
operations, convenience features, applying preferences, preference
transfer, preference aggregation, etc.

27code.google.com/apis/ajaxsearc
28developer.yahoo.com/search/web/webSearch.html
29www.nist.gov/tac/data/data_desc.html



In order to have repeatable search results for same queries, we used
the stable New York Times data source. We chose queries that
returned at least 200 results.

We evaluated system efficiency by monitoring query processing
time in various settings. In particular, we considered:

• 2 data sources: Yahoo! and New York Times
• 5 different numbers of retrieved search results: 100, 200, 300,

400, 500
• 2 types of clusterings: flat (F) and hierarchical (H)

For each of the combinations, we executed 5 queries, each twice.
The queries were chosen such that at least 500 search results would
be returned. For each query, we monitored 6 portions of execution
that constitute the total query response time:

• Retrieving search results
• Preprocessing retrieved search results
• Initial clustering by a built-in algorithm
• Applying preferences to the initial cluster tree
• Presenting the final cluster tree
• Other (e.g., data transfer time between server and browser)

For the New York Times data source, the index was loaded into
memory to simulate the server side search engine behavior. The
time spent on applying preferences depends on the number of ap-
plicable stored paths. For each query, we made sure that at least half
the number of retrieved results existed in a modified path, which is
a practical upper-bound on the number of user edits on the clusters
of a query.

Utility evaluation methodology.
For utility evaluation, we focused on the effectiveness of ClusteringWiki
in improving search performance, in particular, the time users spent
to locate a certain number of relevant results. The experiments were
conducted through a user study with 22 paid participants. The par-
ticipants were primarily undergraduate, with a few graduate, col-
leage students.

We compared 4 different search result presentations:

• Ranked list (RL): search results were not clustered and presented
as a traditional ranked list.
• Initial clustering (IC): search results were clustered by a default

built-in algorithm (frequent phrase hierarchical).
• Personalized clustering (PC): search result clustering was per-

sonalized by a logged-in user after a series of edits, taking on
average 1 and no more than 2 minutes per query.
• Aggregated clustering (AC): search result clustering was based

on aggregated edits from on average 10 users.

Navigational queries seek the website or home page of a single
entity that the user has in mind. The more common [17, 98] infor-
mational queries seek general information on a broad topic. The
ranked list interface works fine for the former in general but is less
effective for the latter, which is where clustering can be helpful
[74]. In practice, a user may explore a varied number (e.g., 5 or

10) of relevant results for an informational query. Thus, we con-
sidered 2 types of informational queries. In addition, we argue that
for some deep navigational queries where the desired page “hides"
deep in a ranked list, clustering can still be helpful by skipping ir-
relevant results. Thus, we also considered such queries:

• R10: Informational. To locate any 10 relevant results.
• R5: Informational. To locate any 5 relevant results.
• R1: Navigational. To locate 1 pre-specified result.

For each query type, 10 queries were executed, 5 on Google results
and 5 on the AP Newswire dataset from disk 1 of the TIPSTER
corpus. The AP Newswire queries were chosen from TREC top-
ics 50-150, ensuring that they returned at least 15 relevant results
within the first 50 results. For R1 queries, the topic descriptions
were modified to direct the user to a single result that is relatively
low-ranked to make the queries “deep". Google queries were cho-
sen from topics that participants were familiar with. All queries
returned at least 50 results. These queries and their descriptions
and narratives can be found at [3].

Each user was given 15 queries, 5 for each query type. Each query
was executed 4 times for the 4 presentations being compared. Thus,
in total each user executed 15×4 = 60 queries. For each execution,
the user exploration effort was computed.

User effort was the metric we used to measure the search result
exploration effort exerted by a user in fulfilling her information
need. [58] used a similar metric under a probabilistic model in-
stead of user study. Assuming both search results and cluster labels
are scanned and examined in a top-down manner, user effort Ω can
be computed as follows:

• Add 1 point to Ω for each examined search result.
• Add 0.25 point to Ω for each examined cluster label. This is

because labels are much shorter than snippets.
• Add 0.25 point to Ω for each uncertain result. Based on our

assumption, all results before a tagged relevant result are exam-
ined. However, results after the last tagged result remain uncer-
tain. For linked list presentation, there is no uncertainty because
the exploration ends at a tagged result due to the way the queries
are chosen (more relevant results than needed).

Uncertainty could occur for results within a chosen cluster C.
As an effective way of utilizing cluster labels, most users would
partially examine a few results in C to evaluate the relevance of
C itself. If they think C is relevant, they must have found and
tagged some relevant results in C. If they think C is irrelevant,
they would ignore the cluster and quickly move to the next label.
Thus, each uncertain result has a probability of being examined.
Based on our observation for this particular user study, we em-
pirically used 0.25 for this probability.

4.4.2 System Evaluation Results
For correctness, all functional and system tests were executed suc-
cessfully. A detailed description of these tests can be found at [3].
In the following, we focus on the efficiency evaluation results.

We recorded and averaged (over 10 queries) the runtime in sec-
onds for all 6 portions of total response time. In addition, we also
computed the average total execution time, which includes prepro-
cessing, initial clustering, applying preferences and presenting the



Figure 6: Efficiency evaluation.

final tree. This is the time that our prototype is responsible for. The
remaining time is irrelevant to the way our prototype is designed
and implemented. While the details are reported in [3], Figure 6
shows the trends of the average total execution time (Exec in the
figure) and response time (Resp) for both flat (F) and hierarchical
(H) presentations over 2 sources of Yahoo! (Yahoo!) and New York
Times (NYT). From the figure we can see that:

• Response and execution time trends are linear, testifying to the
scalability of our prototype. In particular, for both flat and hi-
erarchical clustering, the total execution time is about 1 second
for 500 results and 0.4 second for 200 results from either source.
Note that most existing clustering search engines, e.g., iBoogie 30

and CarrotSearch 31, cluster 100 results by default and 200 at
maximum. Clusty 32 clusters 200 results by default and 500 at
maximum.

• Hierarchical presentation (H) takes comparable times to flat pre-
sentation (F), showing that recursive generation of hierarchies
does not add significant cost to efficiency.

• There is a bigger discrepancy between response and execution
times for the Yahoo! data source compared to New York Times,
suggesting a significant efficiency improvement by integrating
our prototype with the data sources.

• Execution times for Yahoo! are shorter than New York Times
due to the shorter titles and snippets.

In addition, we observe (and report in [3] with supporting data) that
applying preferences takes less than 1/10 second in all test cases,
which certifies the efficiency of our “path approach" for managing
preferences. Moreover, presenting the final tree takes the majority
(roughly 80%) of the total execution time, which can be improved
by using alternate user interface technologies.

4.4.3 Utility Evaluation Results
Figure 7 shows the averaged user effort (over 22×5 = 110 queries)
for each of the 4 presentations (RL, IL, PC, AC) and each of the
query types (R1, R5, R10) on the Google data source. Similar
trends can be observed from the AP Newswire data source (see [3]
for details). From the figure we can see that:

30www.iboogie.com
31carrotsearch.com
32www.clusty.com

Figure 7: Utility evaluation on Google data source.

• Clustering saves user effort in informational and deep naviga-
tional queries, with personalized clustering the most effective,
saving up to 50% of user effort.

• Aggregated clustering also significantly benefits, although it is
not as effective as personalized clustering. However, it is “free"
in the sense that it does not take user editing effort, and it does
not require user login.

In evaluating aggregated clustering, we made sure that the users
using the aggregated clusters were not the ones who edited them.

• The effectiveness of clustering is related to how “deep" the rel-
evant results are. The lower they are ranked, the more effective
clustering is because more irrelevant results can be skipped.

The hierarchy of cluster labels plays a central role in the effective-
ness of clustering search engines. From the data we have collected
as well as the user feedback, we observe that:

• Cluster labels should be short and in the range of 1 to 4 terms,
with 2 and 3 the best. The total levels of the hierarchy should be
limited to 3 or 4.

• There are two types of cluster edits, (1) assigning search results
to labels and (2) editing the hierarchy of labels. Both types are
effective for personalized clustering. However, they respond dif-
ferently for aggregated clustering. For type 1 edits, there is a
ground truth (in a loose sense) for each assignment that users
tend to agree on. Such edits are easy to aggregate and be collab-
oratively utilized. For type 2 edits, it can be challenging (and a
legitimate research topic) to aggregate hierarchies because many
edited hierarchies can be good but in diverse ways. A good ini-
tial clustering (e.g., frequent phrase hierarchical) can alleviate
the problem by reducing the diversity.

As part of the user study, we also surveyed on the effectiveness
of general, personalized and aggregated clustering in helping with
search result exploration. On a scale of 1 to 10 with 10 as the best,
users responded with an average rating of 8.21. Most users found
ClusteringWiki efficient and useful in reducing their search
effort.

4.5 Conclusion
Search engine utility has been significantly hampered due to the
ever-increasing information overload. Clustering has been consid-
ered a promising alternative to ranked lists in improving search



result organization. Given the unique human factor in search re-
sult clustering, traditional automatic algorithms often fail to gener-
ate clusters and labels that are interesting and meaningful from the
user’s perspective. In this paper, we introduced ClusteringWiki,
the first prototype and framework for personalized clustering, uti-
lizing the power of direct user intervention and mass-collaboration.
Through a Wiki interface, the user can edit the membership, struc-
ture and labels of clusters. Such edits can be aggregated and shared
among users to improve search result organization and search en-
gine utility.

There are many interesting directions for future work, from fun-
damental semantics and functionalities of the framework to conve-
nience features, user interface and scalability. For example, in line
with social browsing, social network can be utilized in preference
aggregation.

5. WORD SENSE DISAMBIGUATION
Word sense disambiguation (WSD) is the process of using auto-
mated tools to distinguish different usages for the same term. This
often, although not always, lines up with different dictionary senses
of a wordl However, dictionary alignment is not necessary for many
important uses of word sense disambiguation, such as locating an
uncommon usage for a common term.

There are many different techniques to do WSD, but often the ulti-
mate goal is to produce a fine-grained understanding of a the terms
in a specific corpus. Given the exisiting resources, it often makes
more sense to create algorithms and tools to customize existing re-
sources, rather than trying to generate a new resource purely algo-
rithmicly.

Here, we present the C-Cat Wordnet package, an open source li-
brary for using and modifying Wordnet. Later projects intend to
leverage this work to provide a complete WSD package with inte-
grated corpus-specific concept hierarchies. The package includes
four key features: an API for modifying Synsets; implementations
of standard similarity metrics, implementations of well-known Word
Sense Disambiguation algorithms, and an implementation of the
Castanet algorithm. The library is easily extendible and usable in
many runtime environments. We demonstrate it’s use on two stan-
dard Word Sense Disambiguation tasks and apply the Castanet al-
gorithm to a corpus.

5.1 Introduction
Wordnet [33] is a hierarchical lexical database that provides a fine
grained semantic interpretation of a word. Wordnet forms a diverse
semantic network by first collecting similar words into synonym
sets (Synset), for example “drink” and “imbibe” are connected
under the verb Synset defined as “take in liquids.” Then, Synsets
are connected by relational links, with the IS-A link being the most
well known.

Applications typically access Wordnet through one or more libraries.
Every popular programming language has at least one library: the
original for C++, JWNL 33 for Java, and WordNet::QueryData 34

for Perl are just a few examples. While these libraries are robust
and provide many features, they cannot be easily applied to two
new use cases: direct modification and serialization of the database

33http://sourceforge.net/projects/jwordnet/
34http://people.csail.mit.edu/jrennie/WordNet/

and use in a parallel processing framework, such the Hadoop 35

framework. The first has become a popular research topic in re-
cent years, with [104] providing a well known method for adding
new lexical mappings to Wordnet, and the second will increasingly
become important as Wordnet applications are applied to massive
web-scale datasets.

We developed the C-Cat Wordnet package to address these use
cases as part of a larger information extraction and retrieval sys-
tem that requires word sense information for new, domain specific
terms and novel composite senses on web-scale corpora. One ex-
ample includes adding new lexical mappings harvested from New
York Times articles. Without support for saving additions to Word-
net and parallel processing, we would be unable to leverage existing
valuable sense information. Our package solves these issues with
a new API focused on modifying the database and by storing the
entire Wordnet database in memory.

We designed the package to be a flexible library for any Word-
net application. It is written in Java and defines a standard Java
interface for core data structures and algorithms. All code has
been heavily documented with details on performance trade-offs
and unit tested to ensure reliable behavior. While other Wordnet
libraries exist, we hope that the release of ours facilitates the de-
velopment of new, customized Wordnets and the use of Wordnet
in large highly parallelized systems. The toolkit is available at
http://github.com/fozziethebeat/C-Cat, which include a wiki detailing
the structure of the package, javadocs, and a mailing list.

5.2 The C-Cat Wordnet Framework
Fundamentally, Wordnet acts as a mapping from word forms to
possible word senses. Terms with similar senses are collapsed into
a single Synset. The Synset network is then formed by linking
a Synset to others via semantic links such as IS-A, PART-OF, and
SIMILAR-TO. Our package makes two significant contributions: a
collection a standardized reference implementations of well known
algorithms and a new API for directly modifying and serializing the
Synset network. In addition, it provides features found in compa-
rable libraries such as JWNL.

The C-Cat library is split up into four packages:

1. The Core Api contains data format readers, writers, and Synsets;

2. Similarity Metrics;

3. Word Sense Disambiguation algorithms;

4. and Castanet [107], a method for automatically learning doc-
ument facets using Wordnet.

5.2.1 Core Api
The core API is centered around two interfaces: anOntologyReader
and a Synset. The OntologyReader is responsible for parsing a
Wordnet file format, building a linked Synset network, and re-
turning Synsets based on query terms and parts of speech. The
Synsetmaintains all of the information for a particular word sense,
such as it’s definitions, examples, and links to other Synsets. Both
interfaces provide mechanisms for modifying the sense informa-
tion, Synset links, and lexical mappings. We store this entire
structure in memory due to the minimal size of Wordnet, for ex-
ample, version 3.0 is only 37 Megabytes on disk, and so that users

35http://hadoop.apache.org/



OntologyReader reader = ...
Synset cat = reader.getSynset("cat.n.1");
for (Synset rel : cat.allRelations())

cat.merge(rel);
System.out.println(cat);

Figure 8: A simple merge example using the OntologyReader
and Synset interfaces.

can use Wordnet on novel distributed file systems, such as Hadoop,
that do not use standard file system APIs.

Synsets. are defined by three sets of values: word forms, links to
other Synsets, and a part of speech. Each Synsetmay have multi-
ple word forms and multiple links, but only one part of speech. We
use both standard Wordnet relations and arbitrary relations to label
a directed link between two Synsets, with the relation being stored
in only the source Synset. We provide several methods for access-
ing relations and related Synsets: getKnownRelationTypes(),
allRelations(), and getRelations(). In addition, each Synset
can have a set of example sentences and a definition. To modify
each Synset, the interface includes additive methods for relations,
word forms, and examples. Furthermore, we provide a merge()
method that takes all information from one Synset and adds it to
another Synset. Figure 8 provides a simple example using this
merge API; after the code has been run, “cat.n.1” will contain all
of the information from it’s related Synsets. Lastly, the interface
also permits arbitrary objects, such as ranking values, feature vec-
tors, or additional meta data, to be attached to any Synset as an
Attribute. Any Attributes are also merged on a call to merge.

OntologyReader. defines an interface that maps word forms to
Synsets. Implementations are designed to be initialized once and
then used ubiquitously throughout an application. The interface
provides methods for getting all Synsets for a word or a specific
sense, for example, the query “cat.n.1” in figure 8 retrieves the first
noun Synset for the term “cat”. To modify the sense network, we
provide two key methods: addSynset(new) and removeSynset(old).
addSynset(new) adds a mapping from each of new’s word forms
to new. removeSynset(old) removes all mappings from old’s
word forms to old, thus removing it from the lexical mapping com-
pletely.

5.2.2 Similarity Metrics
While the semantic network of Wordnet is interesting on it’s own,
many applications require sense similarity measures. As such, we
provide the SynsetSimilarity interface that returns a similarity
score between two Sysnets. This is, in short, a Java based im-
plementation of the Wordnet::Similarity package [90], which is in
Perl. Figure 9 provides a naive, but short, code sample of our API
that computes the similarity between all noun Synsets using mul-
tiple metrics.

Below, we briefly summarize the measures from [90] that we im-
plemented. Several measures utilize the Lowest Common Sub-
sumer (LCS), i.e. the deepest parent common to two Synsets using
IS-A relations. Each measure takes in two Synsets, A and B, as
arguments and returns a double value, typically between 0 and 1.

Path Based Methods. measure the similarity based on a path
connecting A and B. Path simply returns the inverse length of
the shortest path between A and B. Leacock&Chodorow [63]
returns the length of the shortest path scaled by the deepest depth
in the hierarchy. Wu&Palmer [120] returns the depth of the LCS
scaled by the cumulative depth ofA andB. Hirst&St.Onge [46]
uses all links in the hierarchy and measures the length of the path
that is both short and has very few link types.

Lexical methods. measure the amount of lexical overlap be-
tween A and B. Lesk [66] returns the number of words overlap-
ping in A and B’s glosses. ExtendedLesk [7] extends Lesk by
also comparing the glosses between any Synsets related to A or
B.

Information based Methods. utilize the Information Content
(IC) of a Synset, which measures the specificity of the terms in a
Synset as measured in a sense tagged corpus. Resnick [94] re-
turns the IC of the LCS. Jiang&Conrath [51] returns the inverse
difference between the total IC ofA andB and the IC of their LCS.
Lin [69] returns the IC of the LCS scaled by the total IC of A and
B.

In addition to the raw similarity metrics, we provide a utility classes
that return meta information about a pair of Sysnets such as their
shortest path, their LCS, and several other helpful methods.

5.2.3 Word Sense Disambiguation
Word Sense Disambiguation is perhaps the most standard appli-
cation of Wordnet. Disambiguation models attempt to select a
Synset for a given word that best matches a given context. For ex-
ample, an algorithm might select the river bank Synset of “bank”
for the context “he sat on the bank of the river” rather than the finan-
cial institution Synset. We provide aWordSenseDisambiguation
interface that applies word sense labels to tokenized sentences. Cur-
rently, we only provide a small number of unsupervised algorithms,
but plan on adding more. Below, we briefly describe each algo-
rithm.

Lexical Methods. rely on lexical information in Wordnet to dis-
ambiguate words. Lesk [66] selects the Synset that has the high-
est total Lesk similarity to the Synsets for other context words.
ExtendedLesk [7] extends Lesk by using the Extended Lesk sim-
ilarity metric for all comparisons. MostFrequentSense selects
the first Synset returned by Wordnet for a given term. This serves
as a canonnical baseline which is often challenging to outperform.

Graphical Methods. treat the network as a graph and disam-
biguate using a number of measurements. PersonalizedPageRank
[1] (PPR) runs the PageRank algorithm over an undirected graph
composed from the entire Wordnet network. Words needing dis-
ambiguation are given “artificial” nodes that link to their possible
Synsets. For each ambiguous word, the algorithm selects the high-
est ranking Synset. DegreeCentrality [83] (DC) forms a sub-
graph from the Wordnet network composed of ambiguous content
words in a sentence and the Synsets that connect their possible
Synsets. It assigns to each word the target Synset with the high-
est degree in the subgraph. PageRankCentrality [83] (PRC)



OntologyReader reader = WordNetCorpusReader.initialize(...);
Set<Sysnet> nouns = reader.allSynsets(PartsOfSpeech.NOUN);
SynsetSimilarity sims[] = {new PathSimilarity(), new LeskSimilarity(), ...};
for (Synset s1 : nouns)

for (Synset s2 : nouns)
for (SynsetSimilarity sim : sims)

System.out.printf("%s %s %f\n", s1, s2, sim.similarity(s1, s2));

Figure 9: Code for computing the pairwise similarity over every noun Synset using multiple metrics

composes the same subgraph asDegreeCentrality, but performs
PageRank on this subgraph and selects the Synsetwith the highest
rank for each ambiguous word.

5.2.4 Castanet
Amazon.com and other online retailers often display manually crafted
facets, or categories, for product navigation. A customer can start
browsing from the Book category and dive down into more specific
categories such as Fiction, Entertainment, or Politics. These facets
form a hierarchy of categories and each category is subdivided un-
til a narrow set of interesting items are found. Unfortunately, not
all datasets have well structued meta data. The Castanet algorithm
automatically learns this hierarchical facted meta data (HFC) for a
set of documents by using discriminative keywords [107], making
structured navigation possible for abritrary document sets.

Castanet takes advantage of Wordnet’s IS-A hierarchy to automat-
ically create HFC. Castanet first extracts keywords from the set of
documents (we use term-frequency inverse document frequency,
TF-IDF, by default, but our API allows for other methods). For
each extracted keyword, Castanet then creates a chain of words that
lead from the root of the hierarchy to the keyword’s Synsets. Each
keyword chain is then merged together to form a “backbone” tree
which is later reduced by eliminating redundant or non-discriminative
nodes, such as those with one child.

Our Castanet API is both simple and flexible. To create a Castanet
tree, one callsCastanet.buildTree() with a directory path to a set
of text documents. Our implementation will automatically extract
keywords, extract the backbone tree, and finally index each docu-
ment under it’s learned facets. The returned result allows users to
fully navigate the documents via the learned facets. We also pro-
vide an example Java web service for exploring the hierarchy in a
browser.

5.3 Benchmark
To evaluate our library, we apply our six WSD implementations
against two standard evaluations: the all words disambiguation tasks
from SenseEval 3 [105] and SemEval 2007 [92], these use Word-
net version 1.7.1 and 2.1 respectively. We answer all test instances
except those that do not have any mapping in Wordnet. Before pro-
cessing, we apply part of speech tags to each token using the Open
NLP MaxEnt Tagger ver 1.5.036. We use the original databases as a
baseline, called Base, in our experiments and test our modification
API by adding the eXtended Wordnet (XWN) relations [78] to each
database and disambiguate using these extended Wordnets37.

Table 7 presents the F1 score for each algorithm using the original
36http://opennlp.sourceforge.net/models-1.5/
37Note that we added XWN 1.7 relations to Wordnet 1.7.1 and
XWN 2.0 relations to Wordnet 2.1, some links were discarded due
to updates in Wordnet.

Model Ver SenseEval-3 SemEval-07
MFS Base 59.8 49.4
Lesk Base 35.2 27.7

E-Lesk Base 47.8 37.6
PPR Base 42.9 32.8
DC Base 43.2 33.3

PRC Base 31.7 22.7
Lesk XWN 35.2 27.7

E-Lesk XWN 39.9 33.9
PPR XWN 50.3 36.7
DC XWN 47.3 37.1

PRC XWN 33.0 24.0

Table 7: F1 Word Sense Disambiguation scores on the two test sets

and extended databases. As expected, the MFS baseline outper-
forms each unsupervised algorithm. Although our scores do not
match exactly with previous publications of these algorithms, we
still see similar trends and the expected gains from adding new rela-
tions to the hierarchy. ForDegreeCentrality andPageRankCentrality,
our different results are likely due to a implementation difference:
when extracting a subgraph from Wordnet, we only use directed
links as opposed to undirected links for computational efficiency.
Other variations are possibly due to different methods of handling
multi-word expressions and our part of speech tags. Still,DC gains
about 4% points with WXN relations and PPR gains about 7%
points on Senseval-3. Unexpectedly,ExtendedLesk actually does
worse with the additional relations.

We also performed a visual test of our Castanet implementation.
We ran the algorithm over 1,021 articles extracted from the BBC
World News using Wordnet 3.0. The articles came from a diverse
set of categories including world, business, technology, and envi-
ronmental news. Figures 10 and 11 show snapshots of our Castanet
web application. Figure 10 displays the top level facets displayed
to a new user. The top bar of this screen can break down the facets
alphabetically to facilitate facet selection. Figure 11 shows a snap-
shot of several documents found after selecting several facets. It
displays the selected facets, document titles, document text, and
interesting key words. While this is only a simple interface, it pro-
vides an example of what our implementation can accomplish and
how to use our API.

5.4 Future Work
We have presented our Java Wordnet library that provides two new
key features: maintenance of an in memory database and an API
centered around modifying the network directly. Additionally, we’ve
provided implementations of several well known similarity metrics,
disambiguation algorithms, and the Castanet information retrieval
algorithm. All code is unit tested, heavily documented, and re-
leased under the GPL Version 2 license. We are currently working
to extend our newest APIs, such as those for WSD and Castanet,
to handle more interesting use cases. In the future work we hope



to expand this library with an evaluation framework for customized
Wordnets, such as those generated by [104].

6. MIXED-CONTEXT ENTITY CO-OCCURRENCE
MODELING (MC-ECO)

6.1 Introduction
The work described in this section aims to facilitate browsing and
discovery of mixed-type entity contexts. For example, a pair of
prominent individuals could be connected by both business and pol-
itics. We achieve this by applying latent topic models to contexts in
which pairs of entities co-occur, giving the user a concise summary
of entity co-occurrence. This representation could also be used to
cluster relationships across different entity pairs.

6.2 Entity Co-Occurrence (ECO)
Given an appropriately annotated text corpus (e.g., the New York
Times), the Entity Co-Occurrence (ECO) browser [42] allows the
user to perform several useful tasks:

• given an entity (e.g., “George Bush”), find entities that fre-
quently co-occur in the same context (e.g., Saddam Hussein)

• given a pair of entities (e.g., “Bush” and “Hussein”), examine
the actual contexts in which they co-occur

• given a pair of entities (e.g., “Bush” “Hussein”), examine the
tf-idf [75] representation of the aggregate of all contexts in
which they co-occur

We refer to a single context in which a pair of entities co-occur as
a co-context. An example choice of context might be the sentence,
but different choices are possible (e.g., within a ten-token window).

6.3 Adding context types
A natural extension of this idea is to use these co-contexts to assign
a type or label to each context. For example, “Bush” and “Hussein”
could be said to have a politics context, while the context between
“Larry Page” and “Sergey Brin” could be categorized as business.
Even without provided ground truth labels, this could be achieved
using unsupervised machine learning techniques [31]. For example
we could simply apply k-means clustering to the tf-idf representa-
tions of the co-contexts of each entity pair. Clustering entity pairs
by context in this way [44] would enhance user browsing capabil-
ities; for example the user could choose to see only the entities
which co-occur in business contexts with a given entity.

6.4 Mixed-context modeling
However this extension raises the issue of handling contexts that
do not fall neatly into a single category. For example, the context
between “Putin” and “Khodorkovsky” cannot neatly be categorized
as either business or politics, but must be considered to be a mixture
of both aspects.

6.5 Related work
Early work on this problem [44] clustered pairs of named entities
by co-context cosine similarity. The resulting clusters were labeled
and evaluated against manually labeled entity pairs.

The Semantic Network Extractor (SNE) [56] is based on Markov
Logic Networks (MLN) [95] and extracts tuples of the form (relation, arg1, arg2).

Table 8: Research project goals.

Goal Atom Explanation

Edge label (mix) (Entity,Entity) Relation browsing
Node label (mix) Entity Entity browsing

The specific MLN is similar to co-clustering - arguments are clus-
tered by their relation slots and relations are clustered by their ar-
guments. Results are evaluated against manual gold standard rela-
tions.

The Mixed-Membership Stochastic Blockmodel (MMSB) [2] mod-
els graph data. Each node has a distribution θ over latent roles
z. For each candidate edge (i, j), each node samples latent roles
(zi, zj). The edge is generated with probability π(zi,zj), and is
absent otherwise.

Nubbi [23] models two types of text: entity contexts and entity
pair co-contexts. An entity context is formed by concatenating all
contexts in which an entity is mentioned, and is modeled similar to
an LDA document. An entity pair co-context is formed similarly
from contexts in which the entities co-occur, and is modeled with
a special “switching” variant of LDA that selects between entity1
topics, entity2 topics, and entity pair topics.

BlockLDA [6] combines LDA with ideas from MMSB, and also
allows the generation of different data types associated with a given
document such as words, entities, or tags.

Recent work on modeling relations without labeled text [96] lever-
ages the use of distant supervision, where individual entity men-
tions are not labeled with the presence or absence of a given rela-
tion. Instead, distant supervision provides a KB of entity relations
(from Freebase) and a text collection of entity mentions (from the
New York Times) which may or may not discuss the relation. A
constrained graphical model is then used to learn from this supervi-
sion. Follow-on work [122] improves performance further by joint
inference of entity types and relation preferences with respect to
those types. For example, isCitizenOf(x, y) only makes sense
where x is a person and y is a country.

Relational Topic Models (RTM) [22] builds on Supervised LDA
(SLDA) [12], predicting the presence or absence of inter-document
edges (e.g., citations). As in SLDA, a link between documents i
and j depends on the empirical topic frequencies z̄i and z̄j via an
element-wise product within a link prediction function ψ(ηT (z̄i �
z̄j)).

The concept of link homophily refers to the tendency for two edges
with a common endpoint to be similar. This tendency can be ex-
ploited to characterize computer network traffic [35], even in the
presence of packet obfuscation.

Using topic models over relations to assist in discovering new re-
lations has been explored in [116]. That work leverages a large
catalog of existing relations from Wikipedia to learn a background
model, and leverages that to improve the extraction of new rela-
tions.

6.6 Goals



(a) Co-occurring entities.

(b) Co-occurrence contexts.

Figure 12: Investigating “Bush” entity co-occurrence.

Brief summaries of different desired system outputs are shown in
Table 8.

6.7 Our approach
Our approach is to use LDA to model the co-occurrence contexts
of entity pairs, treating individual sentences as the unit of context.
That is, we first run LDA over the entire corpus. The final sample
z then assigns each token in the corpus to a particular latent topic
z. We can then combine these topic assignments with the entity
pair co-occurrence sentences in order to identify topics associated
with the entity pair. We have implemented a prototype of this sys-
tem as a web application, which we use generate the results for the
following example.

Say that we are a historian examining New York Times articles
from 2003 and we are interested in the entity “Bush”. We first
query the web interface to get entities which often co-occur with
Bush (Figure 12a). We would then see “Tony Blair” as a commonly
co-occurring entity, and we could directly examine the sentences in
which they co-occur (Figure 12b).

As in ECO, we can examine the tf-idf representation of their con-
texts, taken in aggregate over all sentences in which they co-occur
(Figure 13a). By applying LDA topic modeling, we can also exam-
ine the prevalent topics from their co-occurrences (Figure 13b).

By grouping related words together, the latent topics give us a more
informative summary than the tf-idf representation alone. Further-
more, the topics themselves are also associated with weights which
can be used for entity-relationship clustering.

6.8 Future extensions
Because we are modeling the contexts in which a pair of entities
co-occur, it is very important that these contexts are as complete
and correct as possible. That is, we would like to resolve different
references to the same entity (e.g., “Saddam Hussein” and “Hus-
sein”). A further challenge is that we require these mentions to be
identified as referring to the same entity even if the mentions occur
in different documents. This problem is known as cross-document

(a) tf-idf of co-occurring contexts.

(b) Prominent topics of co-occurring contexts.

Figure 13: tf-idf and LDA representations of Bush-Blair co-
occurrence contexts.

coreference resolution, and there exist highly scalable streaming
algorithms for this purpose [93].

Beyond this practical concern, there are a variety of exciting theo-
retical directions in which to extend this approach.

• Distant supervision: labels at a coarser granularity than the
level considered by our target task. For example, we may
know that a relation exists between two entities, but not which
mentions refer to that relation. This kind of knowledge may
be effectively exploited with different types of constraints.

• Partial supervision: use an essentially unsupervised tech-
nique with some “seed” instances. For example some proto-
typical mentions could be hard-forced into a given cluster.

• Non-parametric Bayes: the number of underlying relations
is probably not clear a priori, so explicitly modeling this un-
certainty may be advantageous.

• Hierarchical Bayes: many entities appear only in a single
relation, leading to a data sparsity challenge. This problem
may benefit from the evidence sharing effects induced by
hierarchical Bayesian models, e.g., pooling word contexts
across many mentions via a latent parameter variable may
reveal useful patterns. This formulation would also naturally
encode a notion of link homophily.

• Sparsity: a parsimonious representation of a given co-context
type or cluster has obvious advantages, both computational
and cognitive. Tools from sparse dictionary learning work
may be useful.

7. EXPLORING TOPIC COHERENCE OVER
MANY MODELS AND MANY TOPICS

Topic models learn bags of related words from large corpora with-
out any supervision. Based on the words used within a document,
they mine topic level relations by assuming that a single document
covers a small set of concise topics. Once learned, these topics
should correlate well with human concepts, for example, one model
might produce topics that cover ideas such as government affairs,
sports, and movies. With these unsupervised methods, we can uti-
lize useful semantic information in a variety of tasks that depend on



identifying unique topics or concepts, such as distributional seman-
tics [52], word sense induction [113, 18], and information retrieval
[4].

When using a topic model, we are primarily concerned with the
degree to which the learned topics match human judgements and
help us differentiate between ideas. But until recently, the evalua-
tion of these models has been ad hoc and application specific. In
some cases a single approach has been compared to human judge-
ments of semantic similarity or relatedness, see [52] for one set of
evaluations. But these evaluations are costly to generate for do-
main specific topics. In other cases, automated intrinsic measures
such as perplexity have been used, but it’s been noted that improv-
ing the perplexity of a model may not correlate with learning more
semantically coherent topics. Furthermore, few evaluations have
used the same metrics to compare distinct approaches such as La-
tent Dirichlet Allocation [14], Latent Semantic Analysis [60], and
Non-negative Matrix Factorization [64]. This has made it difficult
to know which method is most useful and which parameters should
be used.

We now provide a comprehensive evaluation of these three unique
base models for automatically learning semantic topics. While
these base models are not always used, they represent the core dif-
ferences between each approach to modeling topics. For our eval-
uation, we use two recent automated metrics originally designed
for LDA that try to bridge the gap between comparisons to human
judgements and intrinsic measures such as perplexity [80, 86]. Us-
ing these metrics, we consider several key questions, such as

1. How many topics should be learned?

2. How many learned topics are useful?

3. How do these topics relate to often used semantic tests?

4. How well do these topics identify similar documents?

We first begin by summarizing the three topic models and highlight
their key differences. We then describe the two metrics. After-
wards, we focus on a series of experiments that address our four
key questions and finally conclude with some overall remarks.

7.1 Topic Models
We evaluate three latent factor models that have seen widespread
usage:

1. Latent Dirichlet Allocation

2. Latent Semantic Analysis with Singular Value Decomposition

3. Latent Semantic Analysis with Non-negative Matrix Factorization

Each of these models have been designed with different goals and
are supported by different statistical theories. And while the two
forms of LSA have not typically been referred to as Topic Mod-
els, they have been used in a variety of similar contexts such as
distributional similarity [52], word sense induction [113, 18], and
information retrieval [4]. Based on these similar use cases, we con-
sider it useful to compare these models with a consistent evaluation
that matches well with our overall goal: latent factors should bring
together similar words and separate unrelated words and latent fac-
tors should help distinguish between documents covering distinct
topics.

To focus on our two goals, we are interested in two sets of relations
that are learned by each model: how words interact with topics and
how topics interact with documents. We generalize these two sets
of relations as two distinct matrices: (1)W , a word by topic matrix
that indicates the strength each word has in each topic, and (2)H , a
document by topic matrix that indicates the strength each topic has
in each document. In two of the models (LDA and NMF), these
matrices can represent the relations as probabilities, while the SVD
uses eigen vectors to represent these relations.

7.1.1 Latent Dirichlet Allocation
Latent Dirichlet Allocation [14] learns the relationships between
words, topics, and documents by making an assumption on how
documents are generated. It first assumes that there are a fixed set
of topics that are used throughout a corpus and each topic can use
all observed words. Then, each document, Di is generated by the
following process

1. Choose Θi ∼ Dir(α), a topic distribution for Di

2. For each word wj ∈ Di:

(a) Select a topic zj ∼ Θi

(b) Choose Φzj ∼ Dir(β), a word distribution for a topic
(c) Select the word wj ∼ Φzj

In this model, the Θ distributions represent the probability of each
topic appearing in each document and the Φ distributions represent
the probability of words being used for each topic. These two sets
of distributions match exactly with our H and W matrices, respec-
tively. The model uses one parameter, the number of topics, and
two hyper parameters that guide the distributions, α and β. While
the process above is a generative model, we use collapsed Gibbs
sampling to infer these distributions [41].

7.1.2 Latent Semantic Analysis
Latent Semantic Analysis [60, 61] attempts to find descriptive la-
tent factors that can compactly represent word distributions in ob-
served in documents. The model first represents the data set as a
large term by document matrix M that simply records how many
times each word occurs in each document. It then smooths the
counts so that frequent, but uninformative, words, such as deter-
miners and conjunctions, are given less weight while simultane-
ously boosting the weight of less frequent, but more informative
words38. LSA then uses one of various dimensionality reduction
techniques to learn a smaller sub-space that generalizes observed
relations between word and documents. Traditionally, LSA has
used the Singular Value Decomposition, but we also consider Non-
negative Matrix Factorization as we’ve seen NMF applied in sim-
ilar situations [89] and others have found a connection between
NMF and Probabilistic Latent Semantic Analysis [29], an exten-
sion to LSA. We later refer to these two LSA models simply as
SVD and NMF to signify the difference in factorization method.

Singular Value Decomposition. decomposes M into three
smaller matrices

M = UΣV T

38Based on the original LSA model, we use the Log-Entropy trans-
form for this smoothing



such that M can be reconstructed with minimal noise. Interest-
ingly, the decomposition is agnostic to the number of desired di-
mensions. Instead, the rows and columns in U and V T are ordered
based on their descriptive power, i.e. how well they remove noise,
which is encoded by Σ. As such, reduction is done by simply re-
moving lower ranked rows and columns from U and V T . For our
generalization, we use W = UΣ and H = ΣV T . We note that
values in U and V T can be both negative and positive, preventing
them from being directly interpreted as probabilities.

Non-negative Matrix Factorization. factorizesM with dif-
ferent constraints. It attempts to find two latent topic matrices that
minimizes the euclidean least squares difference while only using
non-negative values. In this respect, we can consider it to be learn-
ing probability distributions over topics. We use the original Eu-
clidean least squares definition of NMF, but we note that the al-
ternative KL-Divergence form of NMF has been directly linked to
PLSA [29]. Formally, NMF is defined as

M = WH

Where H and W map directly onto our generalization. We learn
these probabilities by initializing each set of probabilities at random
and update them according to the following iterative update rules

W = W
MHT

WHHT

H = H
WTM

WTWH

7.2 Coherence Metrics
Topic Coherence metrics score a single topic by measuring the de-
gree of semantic similarity between high scoring words in the topic.
These measurements help distinguish between topics that are se-
mantically interpretable topics and topics that are artifacts of statis-
tical inference. For example consider the sets of topics in Tables 7.2
and 7.2. For our evaluations, we consider two new coherence met-
rics designed for LDA, both of which have been shown to match
well with human judgements of topic quality:

1. The UCI metric [86]

2. The UMass metric [80]

Since both metrics compare distributional similarity between the
top N words in a topic, we generalize the two metrics to compute
the coherence of a topic W as follows

coherence(W ) =
X

(wi,wj)∈W

score(wi, wj , ε)

Where ε indicates a smoothing factor which guarantees that score
returns real numbers.

The UCI metric. defines a word pair’s score to be the point wise
mutual information between two words, i.e.

score(wi, wj , ε) = log
p(wi, wj) + ε

p(wi)p(wj)

The word probabilities are computed by counting word co-occurrence
frequencies in a sliding window over an external corpus, such as
Wikipedia. To some degree, this metric can be thought of as an
external comparison to known semantic evaluations.

The UMass metric. defines the score to be based on document
co-occurrence:

score(wi, wj , ε) = log
D(wi, wj) + ε

D(wj)

Where D(x, y) counts the number of documents containing words
x and y and D(x) counts the number of documents containing x.
Significantly, the UMass metric computes these counts over the
original corpus used to train the topic models, rather than an ex-
ternal corpus. This metric is more intrinsic in nature; it attempts to
confirm that the models learned data known to be in the corpus.

Model Metric ε Top Words

LDA
UMASS 1.0 told asked wanted

thought time
10−12 told asked wanted

thought time
UCI 1.0 restaurant menu sauce

food dishes
10−12 vaccine health smallpox

flu vaccines

NMF
UMASS 1.0 browned servings table-

spoons garlic oven
10−12 browned servings table-

spoons garlic oven
UCI 1.0 kitchen dining fireplace

1-bath 3-bedroom
10−12 loans borrowers refi-

nance borrower refinanc-
ing

SVD
UMASS 1.0 sister struggling property

welfare decade
10−12 sister struggling property

welfare decade
UCI 1.0 gains diagramed envi-

ronmentalist organizing
tricks

10−12 explain power rush noon
shelter

Table 9: The top 5 words for the best topics as measured by each
metric

7.3 Evaluation
We have designed four sets of experiments to evaluate how each of
these models perform, with a focus on ow the models vary based
on the number of requested topics and how the models vary with
respect to each other. We also take into consideration the ε value
for the two metrics. We apply both metrics, and aggregate versions
of each metric, to each learned model.



Model Metric ε Top Words

LDA
UMASS 1.0 front page 27 28 20

10−12 front page 27 28 20
UCI 1.0 show students pho-

tographs 6 objects
10−12 hours day time night

days

NMF
UMASS 1.0 lists 6 witchcraft murder

7
10−12 27 21 d5 f5 cd

UCI 1.0 officials inside chemical
game field

10−12 renovated 2-bath tax-
deductible exposures
doormen

SVD
UMASS 1.0 taxes wears innocent

summoned approached
10−12 gains diagramed envi-

ronmentalist organizing
tricks

UCI 1.0 pop contracts steering
chaos grande

10−12 gains diagramed envi-
ronmentalist organizing
tricks

Table 10: The top 5 words for the worst topics as measured by each
metric

We trained all models on 92,600 New York Times articles from
2003 [101]. For all articles, we removed stop words and any words
that occurred less than 200 times in the corpus, which left 35,836
tokens. All documents were tokenized based on whitespace. For
the UCI metric, we used the UkWac Wikipedia corpus and consid-
ered all terms in Wikipedia while computing the sliding window
with 10 words before and after the focus word. In all experiments,
we used the top 10 words from each topic that had the highest
weight, in terms of LDA and NMF this corresponds with a high
probability of the term describing the topic but for SVD there is no
clear semantic interpretation.

In our experiments we

1. explore several views of topic coherence such as average coherence,
best coherence, and coherence entropy;

2. explore topic uniqueness metrics to evaluate how distinct each model
becomes;

3. compare average topic coherence to previous semantic similarity
evaluations;

4. compare topic coherence with classification strength.

7.3.1 Topic Coherence Views
Before we can compare topics models against one another, we re-
quire a coherence metric for complete models, rather than individ-
ual topics. We consider four possible aggregates: the coherence of
the best topic for a model, the coherence of the median topic, the
average coherence of all topics, and the entropy of the coherence
for all topics. Each aggregate method gives us slightly different
information, in particular the entropy can cleanly differentiate be-
tween two interesting cases that the others cannot: cases where all
topics have relatively similar scores and cases where some topics
are highly rated but others are poorly rated.

Figures 14, 15, and 16 show the scores for the average coherence,
best coherence, and entropy, respectively, when setting ε = 1.0
for the smoothing factor39. The average and best scores indicate
a simple relationship between the three models: the SVD is con-
stantly worse than LDA and NMF, and the NMF is often times
better than LDA. Surprisingly though, with the UCI metric, the en-
tropy shows an unexpected variation: the NMF has distinctly non-
uniform scores. Based on a manual inspection of the topics, we
noticed that some of the high scoring topics appeared incoherent
and composed of rare words.

We further explored the impact of the smoothing factor and set
ε = 10−12 and then re-evaluated the models. Figures 18 and 17
show the average and median coherence scores for the modified
metrics. Interestingly, these plots show a starkly different relation-
ship between NMF and LDA: under both metrics, the average NMF
score is regularly less than the average LDA score and the median
NMF score for both metrics begins to degrade as more topics are
requested. Also of equal interest, we see that the SVD performs
terribly, generating scores well below NMF and LDA. Even more
interestingly, if we focus on the best 10% topics, we see the original
relationship: NMF appears to generate better topics than the other
two models.

We further explore this performance variation by focusing on a sin-
gle set of models trained for 300 topics. Figures 22 and 23 show
the spread of all topic scores for each model when setting ε to 1.0
and 10−12, respectively. In all cases, LDA has a reasonably narrow
range. The SVD again has a narrow range when using a high ε and
a wide range of poor scores for a low ε. The NMF plots confirm
our suspicion: the model continues to generate a set of high qual-
ity topics, but the majority of the topics learned have a wide range
of low scores. We similarly see this variation in Figure 25, which
plots the variation when taking the average over a subset of the best
topics.

7.3.2 Topic Uniqueness
As our second experiment, wanted to evaluate whether or not the
models are successfully learning new distinct topics as we request
more. While the coherence metrics were initially designed to evalu-
ate coherence, the first experiment indicated that they can similarly
be used to evaluate incoherence. With that in mind, we developed
a simple metric that rates the semantic disagreement between sets
of topics. This is simply defined as

uniqueness(W ) =
X

wi∈W,wj /∈W

score(wi, wj , ε)

This measures the similarity between words in a topic and words
in other topics. Ideally, each topic should have a low uniqueness
score, which indicates that each topic is semantically distinct. For
complete models, we would expect the total uniqueness over all
topics to decrease as we request more topics until we reach a point
of topic saturation, i.e. the model is no longer able to discover more
unique topics.

Figure 26 reports the total uniqueness scores for each model. Sur-
prisingly, we see no saturation point for any model, indicating that

39To the best of our knowledge, the original metrics used this same
smoothing factor



we could learn well over 500 topics and still extract new informa-
tion. The SVD provides good justification that this metric makes
sense, since each new topic returned by the SVD is guaranteed to be
orthogonal and distinct from previous topics, the total uniqueness
decreases steadily. Both LDA and SVD similarly show a steady
decrease with some variation that is likely due to random starting
points.

7.3.3 Word Similarity Tasks
As our third experiment, we wished to compare the coherence scores
to two standard word similarity tests, the [99] semantic similarity
task and the [34] relatedness task. Both tasks were created by giv-
ing human judges a set of word pairs. Evaluators were asked to
determine the similarity or relatedness of a word pair. The ruben-
stein65wordsim task used 65 word pairs while Finklestein et. al
used 353 word pairs. Both have been used as a standard metric of
distributional word spaces, jurgens10sspace provide a good collec-
tion of how traditional distributional semantic models fare on this
task.

For each learned model, we use theW word by topic matrix as a re-
duced representation of each word. For each test word pair, we use
the cosine similarity between the reduced representations of each
word and record the correlation between the similarity scores and
the known human evaluations. A high correlation between similar-
ity scores and human judgements indicate that the word by topic
distributions closely model human expectations.

Figure 27 displays the results. Surprisingly, NMF and LDA both
outperform SVD by a wide margin. Also, LDA does slightly bet-
ter, especially as we request more topics, than NMF, which matches
well with our observations from the first experiment. With the
Rubenstein & Goodenough test, we see regular improvement in
performance as we request more topics, while performance on the
Finklestein et. al test levels out after about 100 topics, and even
starts to degrade for NMF after 100 topics.

7.4 Discussion
Through our experiments, we made several interesting discoveries.
First, we discovered that the coherence metrics depend heavily on
the smoothing factor ε. The original value used by the creators of
the metric, 1.0 created a positive bias towards NMF models from
both metrics, even when NMF generated incoherent topics. Our
manual investigation suggests that the metrics do not accurately
compare two words that are both rare and unrelated. A smaller ε
correctly scores these cases and appears to have little affect on the
common case, and so we recommend using a small smoothing fac-
tor. We also see that the SVD underperformed in all experiments,
indicating that both LDA and NMF provide a better representation
of semantics.

Second, we note that while fewer topics are faster to create, we have
not exhausted the ability of automated methods to extract seman-
tically coherent topics from a single year of the New York Times
corpus, even with a relatively large number of topics (500) for a
fairly small corpus. However, the quantity of low quality topics
increases much more rapidly, and the computational cost increases
dramatically as well.

Overall, it appears that LDA maintains a edge over NMF, and holds
the promise of much more semantically motivated tuning. Over
time we expect continual improvements in available LDA algo-
rithms, enhancing both their speed and semantic utility.
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Figure 10: A sample view of learned Castanet facets for the BBC Word News data set

Figure 11: A sample view of a discovered document after navigating the Castanet facets
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Figure 14: Average Topic Coherence for each model
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Figure 15: Topic Coherence of the best topic for each model

(a) UMass (b) UCI

Figure 16: Entropy of the Topic Coherence for each model



(a) UMass (b) UCI

Figure 17: Median Topic Coherence with ε = 10−12
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Figure 18: Average Topic Coherence with ε = 10−12
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Figure 19: Average Topic Coherence of the top 10% topics with ε = 10−12
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Figure 20: Median Topic Coherence of the top 10% topics with ε = 10−12
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Figure 21: Average Topic Coherence of the top 10% topics for each model

(a) UMass (b) UCI

Figure 22: Topic Coherence quartiles for models trained on 300 topics
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Figure 23: Topic Coherence quartiles with ε = 10−12 for models trained on 300 topics
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Figure 24: Topic Coherence for the top X% topics out of 300 topics
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Figure 25: Topic Coherence for the top X% topics out of 300 topics with ε = 10−12
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Figure 26: Topic Uniqueness measures for each model
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Figure 27: Word Similarity Evaluations for each model


