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1 INTRODUCTION 

The social and economic costs associated with global warming will be 

measured in terms of changes in the frequency and intensity of extreme events 

such as droughts, floods, hurricanes, tidal surges, etc. Small changes in the 

mean temperature are easily adjusted to, but successive years of drought or 

a sequence of storms are much less easily handled even by advanced societies. 

The capability to forecast the frequency and intensity of extreme events in 

an altered atmosphere poses a great challenge. 

In the statistical literature the large or small values assumed by a ran

dom variable from a finite set of measurements are termed extreme values. 

The variable of interest could be sea level, atmospheric temperature, pre

cipitation, stream flow, etc. The largest and smallest value of the extremes 

are often of most interest. However, other extremes such as the second or 

third largest or smallest may be of interest. The extreme values are random 

variables. For example, the minimum temperature in January in Bismarck, 

North Dakota, exhibits random variations that are best described in terms 

of probabilities. 

The application of extreme value statistics is uncommon in the envi

ronmental sciences except in the field of hydrology, where the concepts have 

been used in designing dams. As noted in Levine et al. (1990), extreme value 

theory has not received much attention in climate studies or in discussions of 

greenhouse warming despite the obvious importance of large deviations from 
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the mean. The theory and applications are rarely treated in books on prob

ability and statistics and almost never covered in university courses. If there 

are references to the subject, it is generally to Gumbel's (1958) book which 

has long been out of print. Cramer and Leadbetter (1967) and Leadbetter, 

Lindgren and Rootzen (1982) provide an extensive treatment of extremes in 

stationary sequences but focus primarily on certain of the difficult mathe

matical issues related to extreme values. The statistics of extremes is closely 

connected to order statistics which provides an approach to distribution free 

or robust statistics (David, 1981). The present paper provides a review of 

the theory with a number of applications that are related to climate change 

ISSUes. 

The applications are both to real data - time series of temperature 

derived from various sources - and to results obtained from much simplified 

computer models of climate. The latter application is primarily to provide an 

illustration of how the problem of extremes can be approached, rather than 

to give definite answers. Some of the examples could be extended to data 

derived from large scale global circulation models (GCMs) of the atmosphere, 

but since we do not have access to GCMs we have not done so. 

Sections 2, 3 and 4 serve to introduce the nomenclature of order statis

tics with a few elementary examples of the calculation of the probability of 

extreme climatic events. In Section 5, results from order statistics are applied 

to calculate the probability that the observed global average surface air tem

perature records contain a trend. Unlike a previous analysis (Levine et aI., 

1990), no assumption is made as to the underlying statistical distribution. 
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Since 'extremes are rare events they can be approximated as independent 

with negligible correlation. In accord with the earlier analysis (Levine et al., 

1990), order statistics indicate very high odds (l05 -106 to 1) in favor of the 

hypothesis that the data records contain a linearly increasing trend in global 

average surface air temperature. 

Section 6 presents an introductory discussion of the distribution of ex

tremes with no restricting assumptions as to the distribution of the parent 

population. While general results can be obtained, detailed applications 

require assumptions as to the underlying distribution. The theory is spe

cialized in Section 7 to normal distributions. An application to the Lorenz 

27-variable model of climate shows that the temperature values calculated 

for the Lorenz model closely approximate normally distributed variates both 

about the mean and in the tails (extremes) of the distribution for a rUll of 

1000 years. 

For a normally distributed random variable, the range (maximum mi

nus minimum) increases without limit as the number, n, of variates selected 

increases (as (In n)1/2). Section 7.2 provides an example where the phys

ical dimension of the underlying attractor limits the growth in range with 

time. This limit is not observed in model runs or in observed temperature 

records (see Sections 7.3 and 7.4). Both model runs and observed tempera

ture records from which a trend has been removed closely approximate nor

mally distributed variates about the mean and in the tails of the distribution. 

These results raise questions as to the predictability of climate. 

The effect of a shift in mean on the frequency of extremes is discussed 
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in Section 8 with special reference to possible thresholds for damage due to 

climate variability. Section 9 provides a brief summary of the major findings 

of the report. 
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2 RETURN PERIOD 

Engineers who design dams are interested in the time interval between 

two discharges of a river, each of which is greater than or equal to a given 

discharge. The probability p of a random variate X having a value greater 

than x is 

p = 1 - F(x) - 1 - i~ f(y) dy 

F(x) - Pr(X ~ x) 

where F(x) is the cumulative probability function and f(x) is the probability 

density function. We are interested in the number of independent trials k 

before the value x is exceeded. The variable k is an integer limited on the 

left but not on the right, since the value of x may never be surpassed. The 

probability that x is first exceeded at trial k is 

since the event failed for the first k-l trials (Bernoulli trials). The mean for 

k is simply 

E [k] = IIp 
1 

- 1 - F(x) > 1. 

The return period is defined by 

1 
T(x) == 1 - F(x)' 

If an event has probability p, on the a.verage we have to make 1 I p trials in 

order for the event to happen once. 
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The standard deviation for k is 

which for a long return period becomes 

1 
0' '::!. v'2 (T - -). 

2 

The smaller the probability of an event, the larger the spread of the distribu-

tion. This general property lessens the usefulness of extremes in numerous 

situations. 

The cumulative probability W (k) that the event happens before or at 

the kth trial is 

W (k) = 1 - (1 _ p)k. 

The probability that the event will happen before its return period T is 

W(T) _ 1 - (1 _ .!.)T 
T 

~ 1 - ~ = 0.6231. 
e 

H the value to be exceeded, x, is large and the return period long, say 

greater than 10, then the cumulative probability W(k) can be approximated 

by 
k 

W(k) '::!. 1 - exp( - T). 

In hydrology the return period is usually measured in years. For exam

ple, a design engineer may wish to have a high probability (0.95) that an 

event does not happen in N years. The return period T for the design is then 
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approximately 
N 

T= l-W 

80 that in order to have a probability of 1 in 20 that the event does not 

happen in 10 years requires the design to have a much larger return period 

of 200 years. 

These simple considerations illustrate certain features of the statistics of 

extremes. Under the assumption that the events are independent, results can 

be obtained that are free of any assumption with respect to the underlying 

distribution. The assumption of independence might appear to be highly 

restrictive. For dependent variables, their correlation as a function of time 

difference or lag is a partial measure of their dependence. Many of the results 

derived for independent variables apply to dependent variables provided that 

the correlation decreases rapidly enough with lag (Leadbetter, Lindgren and 

Rootzen, 1983). The basic reason for applicability of results obtained from 

the theory of independent events to correlated series is that extreme events 

are rare. Rare events are expected to be separated by long time intervals 

80 that the effects of correlation are negligible. If the correlation function 

decays at least as fast as 1/ In n where n is the time, then the effects of 

the correlation can be neglected as is discussed by Leadbetter, Lindgren and 

Rootzen (1983). 
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3 FREQUENCY OF EXCEEDANCES 

3.1 Bernoulli Trials 

The statistics of Bernoulli trials can easily be applied to extreme events. 

The probability that during the next n years the maximum July temperature 

in Washington, D.C., will exceed 105°F exactly k times is 

where p, estimated on past observations, is the probability that the maximum 

July temperature will not exceed 105°F and where 

n n! 
( k ) = (n - k)! k! 

is the binomial coefficient. The probability of exceeding 105°F in Washington 

is about a 1 in 20- year event, p = 0.95. In the next decade, provided that 

there is no upward or downward trend in temperatures, the probability that 

the maximum July temperature will not exceed 105°F is 

or there is a 40 percent chance that the maximum July temperature will 

exceed 105°F in the period 1990-1999. 

The probability that during the next ten years there will be fewer than 

three years for which the maximum temperature for July exceeds 105°F can 
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also be calculated. There are only three ways that the number of exceedances 

of 105°F cannot be greater than two - namely when the number is zero, one 

or two. The probability of these mutually exclusive events is the sum of the 

probabilities of each 

Po + PI + P2 = (1~) (0.95)10 (0.05)0 + ( 11
0 

) (0.95)9 (0.05) 

+ (1:) (0.95)8 (0.05)2 = 0.9885. 

The probability of the maximum July temperature in Washington in the 

next decade exceeding 105°F three or more times is only 1 in a 100. H in the 

next decade the temperature does exceed 105°F in July three or more times, 

the hypothesis that there is no upward trend in the temperature should be 

reexamined. 

The number of exceedances depends on the interval over which the ob

servations are made. From the results of the above example we can calculate 

the probability that over the next century every decade will have no more 

than two Julys in which the maximum temperature exceeds 105°F. With a 

shift in time scale the probability is 

P = ( 1
0
0 ) (0.9885)10 (1 - 0.9885)0 - 0.89. 
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4 NON-PARAMETRIC ORDER STATIS
TICS 

The need to estimate the probability Pm of the mth ranked observation 

can be avoided by using past observations to determine the exceedances in 

future trials. Let n denote the number of past observations, N the number 

of future observations, m the rank of the ordered past observation and k 

the number of exceedances of the mth ranked observation in N future trials. 

The probability of observing in N trials, k exceedances of the mth ranked 

observation seen in n trials is: 

P(k;n,m,N) ( N )( n )m fl pN-k (1 _ p)k pn-m (1 _ p)m-ldp 
k m Jo 

( : )( ~ )m 

(N + n) ( N + n - 1 ) 
m+k-l 

since the integral is a special case of the Beta integral 

For the largest value, m = 1, the probability of k exceedances is 

nN!(N + n - k -I)! 
P(kj n, I,N) = (N _ k)! (N + n) (N + n - 1)'" 

The probability that the maximum value observed in n trials is not exceeded 

in N future trials is 
n 

P(O;n,I,N) = N ' 
+n 
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and there is 0.5 probability that the maximum is not exceeded in an equal 

number, N = n, of future trials. The calculation of the probabilities for the 

exceedance of the largest value is aided by the recursion relation 

(N + 1 - k) 
P(k+l;n,I,N)= (N+n-k) P(k;n,I,N). 

The probability that all values in N future trials will exceed the largest 

value observed in the first n trials is small. For the case N = n, this proba

bility is 
(N!)2 

P(N; N, 1, n) = (2N)! 

which for N = 6 is 0.00108. 

The various moments of the distribution function can be obtained from 

properties of the hypergeometric function (Gumbel, 1954). The mean number 

of exceedances is 

N 

E (n,m,N) - L k P(k;n,m,N) 
k=l 

- mN/(n + 1). 

Similarly, the variance of the estimate of the number of exceedances is 

2( N)_m(n-m+l)N(N+n+l) 
u n,m, - (n+l)2(n+2) . 

The variance increases with the number, N, of future trials and decreases 

with the number of past observations used to set up the statistics. The 

variance for the number of exceedances of the maximum is 

2 nN(N+n+l) 
u (n,l,N) = (n+ 1)2 (n+2)" 
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The variance of the estimate for the median, m = nil, n odd, is 

2( n+l N)=N(N+n+l) 
u n, 2 ' 4{n + 2) 

so that the ratio of the variance of the estimated number of exceedances of 

the maximum to the number of exceedances of the median is 

u2(n, 1, N) _ 4n 
u2(N, nr,N) - (n + 1)2· 

In one sense, the extremes are more reliable than the median since the vari

ance of the number of exceedances of the median is about ~n as large as the 

variance for the maximum. In the limit of large N with N = m the mean 

and the variance take on simple forms 

E[k] ~ m 

and 

The mean number of exceedances over the mth largest value is equal to 

the rank m itself. The distribution is then similar to a Poisson distribution 

for integers. However, the variance is twice that of a Poisson distribution. 

The probability distribution of exceedances in this case is independent of the 

distribution of the random variable X. It does depend on the assumption that 

the observations are independent. The lack of dependence on the distribution 

is an a.ttractive feature of the theory, since the distribution may be known 

in the vicinity of the median but there will, in most cases, be very few 

observations with regard to extreme values. 
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5 APPLICATIONS OF ORDER STATIS
TICS TO GLOBAL AVERAGE TEMPER
ATURE 

A 109-year record of the annual global average temperature of the at

mosphere has been determined by Hansen and Lebedetf (1987, 1988) (see 

Figure 1). The data have been normalized to zero mean. The maximum 

temperature for the 100-year period 1880-1979 is 0.2°C, observed in 1954. 

The probability of one or more exceedances of the maximum of this 100-year 

record in the nine-year period 1980-1988 is 

100 
P (> 1; 100,1,9) = 1 - 109 = 0.083 

if the average temperature can be taken as an independent trial and there 

is no trend. The expected number of exceedances is E(100, 1,9) = 9/100 = 

0.089 with a variance of (7'2(100,1,9) = 0.095. In fact there were five ex

ceedances: 1988, 1981, 1987, 1983 and 1980. The probability under the 

independence assumption of five exceedances is 

P (5;100,1,9) = 1.03 x 10-6
• 

The observed five exceedances strongly contradict the assumption of inde

pendence and provide support for the hypothesis that there is an increasing 

trend in the annual global average surface temperature. 

H a linear trend with a least square slopes of 0.55° per century is removed 

the maximum residual in the first 100 years is 0.28°C in 1926. There are no 

exceedances for the years 1980-1988 in the residual as would be expected from 
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Figure 1. Variations of global average temperature. The solid curve is a filtered version 
corresponding to a five-year running average (after Hansen and Lebedeff, 
1987; 1988). 

16 

1980 



Table 1 

Expected Number of Exceedances in Six-Year Runs of Global 
Annual Average Temperature and Observed Exceedances in 17 

Six-Year Runs 

Observed Number 
of Exceedances 

Number of in Residual 
Exceedances k Expected after Removal 
of Maximum Probability Number of Observed Number of Linear 

Value of k Exceedances of Exceedances Trend 

0 0.5 8.5 0 2 
1 0.273 4.64 1 3 
2 0.136 2.31 1 3 
3 0.061 1.03 0 4 
4 0.027 0.46 2 2 
5 0.006 0.11 1 1 
6 0.001 0.02 12 2 

the probability distribution for the maximum. In terms of odds, the ratio of 

the probability of the observations containing a trend to the probability that 

the temperatures are independent, identically distributed random variables 

IS 

0.917 =8.9xI05 • 

1.03 x 10-6 

As a further example of the use of the probability distribution, the 108-

year record, 1980-1987, is divided into 18 consecutive six-year segments. The 

maximum value in the first six-year period, 1880-1885 is - 0.37°C. The num

ber of exceedances in each of the subsequent six-year segments is tabulated 

in Table 1 along with the number obtained for the probability distribution. 
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The expected number of exceedances in any six-year period is 

E (6,1,6) = 6/7 = 0.86 

with a standard deviation of 

iT = 1.09. 

Clearly the number of six-year runs with all six values in excess of the maxi

mum for the first six-year segmeut is much larger, 16, than would be expected 

from a sequence of independent trials. The probability of obtaining 12 seg

ments out of 17 in which all the values are in excess is 

17! (12 5 -32 12! 5! 0.00108) (1 - 0.00108) = 1.5 x 10 . 

Table 1 also tabulates the observed distribution of exceedance for the resid-

uals after a linear trend has been removed. The observed distribution still 

differs from the calculated one. However, the probability of obtaining two 

segments in which all six values are greater than the maximum observed in 

the first six-years while small, 1.5 x 10\ is much larger than the probability 

of obtaining 12 such sequences. 

Levine et. al (1990) calculated that the odds for a linear trend in the 

data were 1.7 x 105 to one. In that analysis, the correlation between annual 

temperature was explicitly taken into account through the use of the full 

covariance matrix in the least squares analysis but the analysis was based 

on the assumption that the global average temperatures were normally dis

tributed. The analysis presented above supports the hypothesis of a trend by 

similar odds, but is based on the assumption of independent trials without 

any assumption on the underlying statistical distribution. 
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6 DISTRIBUTION OF EXTREMES 

The above analysis provides information with respect to the number of 

observations that would exceed the mth largest value of n initial observations. 

The analysis provides no information on the value that would exceed the 

observed extremes. Such information requires that the underlying probability 

distribution, F(x), be known. As illustrated above, some of the analysis of 

the frequency of exceedances can be carried out without assumptions with 

respect to the underlying distribution of the random variable. The exact 

form of the distribution is generally not known, but an asymptotic theory 

that covers a wide variety of initial distribution has been developed (Cramer, 

1946, Gumbel, 1958). 

As before, let k denote the kth value from the top of a sample of n 

observations. The probability density g(Xj n, k) for the kth value is equal to 

the probability that among n samples n - k are less than x, and k - 1 are 

greater than x while the remaining value falls between x and x + dx 

g(Xj n, k) = n( ~ = ~ )[F(x),,-k (1 - F(x))k-l]f(x)dx 

where F(x) is the probability distribution function and f(x) is the density 

distribution function. For the maximum value k = 1 and 

g(xjn, 1) = [F(x)]" dx. 

For a population having a normal distribution with zero mean and unit vari-

ance 

F(x) = ~1% e- t '/2 dt. 
v211' -00 
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The dependence of the maximum value on the number of observations from 

a series of independent trials drawn from a normal population is illustrated 

in Figure 2. For a sample of ten, the maximum has a 0.05 probability of 

exceeding 2.57 standard deviations; for a sample of 1000, the maximum will 

exceed 3.89 standard deviations one in twenty times. 
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Figure 2. Variations of the probability of the maximum of n independent trials with n. 
The distribution has zero mean and unit variance. 
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7 ASYMPTOTIC DISTRIBUTION OF EX
TREMES FOR A NORMAL PROCESS 

The general asymptotic theory of the distribution of extremes deals with 

the conditions under which 

approaches a limiting distribution G(x) where a" and b" are suitable normal

izing constants and 

The theory states that every distribution G, has, up to scale and location 

changes, one of the following parametric forms commonly called the Three 

Extreme Value distributions: 

Type I: oo<x<oo G(x) = exp( _e-r ) 

Type II: x>O G(x) = exp( _x-a); Q > 0 
x~O G(x) = 0 

Type III: x <0 G(x) = exp( -( _x)O); Q > 0 
x>O =1 

(Leadbetter, Lindgren and Rootzen, 1983). The normal distribution, unlim

ited on the left and right, falls into the Type I domain of attraction. The 

density distribution for the kth ordered value becomes 

which is illustrated in Figure 3 for k = 1, 2, 3. 

For a normal distribution with zero mean and unit variance, if x is the 

23 



1.4 

, .. , , 
, \ 3 

1.2 , , , , , 
• , 
• , , , 
• , 
• , 
• , 
• , 

i • , , , 
~ 0.8 • • , 

I 
• • • • 

0.6 I 
ci: • • • • • 

0.4 • 

figure 3. The probability density function for the double exponential. 
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kth value from the top, then { is 

The normalizing constants can be obtained by a complex calculation. 

The solution for x when n is large can be obtained by partial integration 

leading to 

With bounded {, x is given by 

1/2 In In n + In 411" In { 1 
x = (2 In n) - 2(2 In n)1/2 - (2 in n)1/2 + O( in n)· 

For the general form of the normal distribution with arbitrary mean m and 

variance (T2, the form for Mn = x is asymptotically 

_ 112 In In n + In 411" (T v 
X - m + 0'(2 In n) - 0' 2(2 in n)1/2 + (2 In n)1/2 

where v is a random variable having the frequency function 

The expression for the kth value from the bottom is given by a similar ex-

pression with opposite sign for all terms but the mean, m. 

The expected value Cor the kth value from the top is 

E[ . k] = (2 I )1/2 _ In In n + In 411" + 2(81 - C) 0(_1_)) 
x,n, m+O' nn (2/nn)1/2 + Inn 

with variance D2 

0'2 
D2(x· n k) = --:---

" 2 In n (
n-2 _ 82) + 0 (_1 ) 
6 In2 n 

25 
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where C is Euler's constant, C=0.57722 ... , 

1 
+k-1 

1 
+ (k -1)2' 

Similar expressions can be calculated for the difference between the kth max

imum and kth minimum values of the n independent trials drawn from a 

normal population. 

E[ _ . k] = (4 In n -In In n -In 411" - 2(51 - C) 0(_1_»)" 
x 1/,n, (1 {2 In n)1/2 + Inn 

(12 11"2 1 
D2[x -1/; n, k] = -(- - 52) + 0(-). 

In n 6 In2 n 

The dependence of the range on the number of observations is indicated 

in Figure 4. The three standard deviation bounds are also shown. For a 

normal population of a 1000 variables there is about 1 in a 100 probability 

that the maximum range will exceed eight standard deviations. The expected 

value for the maximum of normal population is shown in Figure 5. 

7.1 Applications of Asymptotic Theory of Extremes 
to a Climate Model 

The variation of global average annual temperature depicted in Figure 1 

shows irregular behavior with a non-vanishing correlation function for lags 

up to the length of the record and continuous power spectrum with abun

dant energy at low frequencies (Levine et.al, 1990). The irregular behavior, 

characteristic of chaotic systems, also shows clearly in complex models of the 
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Figure 4. Variations of the maximum expected range for a random variate drawn from a 
normal population as a function of the number of observations. The 
distribution has zero mean and unit variance. The three standard deviations 
from the expected value are also shown. 
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atmosphere such as General Circulation Models, which contain about 100,000 

coupled nonlinear equations, and also in the simplest models. Lorenz (1984a) 

has developed a low-order model in 27 variables that has been analyzed in 

some detail by Levine et a1.,(1990). The physical variables include the mix

ing ratios of water vapor and liquid water as well as temperature, pressure 

and the usual dynamic variables. In the Lorenz model, the atmosphere and 

ocean exchange heat and water through evaporation and precipitation. The 

model also produces clouds, which reflect incoming solar radiation, while 

both phases of water absorb and re-emit infrared radiation. 

For a WOO-year run for the global average annual temperature, the ob

served standard deviation was 0.3583°C. The data scaled to unit variance and 

zero mean are shown in Figure 6. The observed maximum value is 3.407. The 

probability of obtaining this value with 1000 values is 0.712, or a probability 

of 0.29 that 3.4 would be exceeded in a WOO-year run of independent trials 

drawn from a normal population. The distribution of temperature deviations 

about the mean approximate a normal distribution as illustrated in Figure 7. 

The variation of range with the number of observations is shown in Figure 8. 

The variation closely follows the expected value of the range drawn from a 

normal population. 

7.2 Physical Dimensions of an Attractor 

For a truly random, non-deterministic process, such as a variate drawn 

from a distribution unlimited on the left and right, the range will grow with 
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Figure 6. Variation of global-mean. annual-mean. sea-level air temperature for 1000 years 
in a numerical solution to the Lorenz 27-variable model of the atmosphere. 
Data are rated to unit variance and zero mean. 
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the number of variates selected at a rate approximately 

For a time series n, the number of variates equals the number of time units. 

In a deterministic system governed by a set of coupled nonlinear differen

tial equations, one would expect that the embodied conservation equations 

would set limits to the maximum growth of any state variable. In terms of the 

language of nonlinear dynamical systems, the -governing attractor has finite 

physical dimensions. In this context we are speaking of the physical dimen

sions of the attractor as contrasted to the usual embedding dimensions which 

constitute a measure of the denseness of the set making up the attractor. 

In the limit of large times, the range of random variables grows without 

bound but very slowly as (In n )1/2. For deterministic systems, the growth, as 

noted above, should be limited at a large enough n. For the Lorenz system, 

it is apparent that the limit has not been reached in 1000 years (see Figure 8). 

A general problem is that of determining the limits to the range of a 

particular variable and the time required to explore the far reaches of the 

attractor. It would appear that these are difficult issues, particularly for a 

system as complex as the 27-variable Lorenz system. 

In order to further examine the time required for the Lorenz 27-variable 

model to explore the outer regions of the attractor, the model was run for 

10,000 years. The results are shown in Figure 9. It would appear that 

the times to attain the outer reaches of the attractor are on the order of 

5,000 years. To distinguish between a random process with the events drawn 

from a normal population and a deterministic Lorenz system by examining 
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Figure 9. The variation with time of the range of the globally averaged values of surface 
atmosphere temperature. sea surface temperatures and dew point temperature. 
The values are averaged owr a month and reported each year. The model is 
the Lorenz 27 -variable model. The data are normalized to zero mean and unit 
variance. The heavy curve is the expected value of the range for a sample 
drawn from a normal population. 
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the tails of the distribution one would need to select on the order of 104 

values. This observation suggests that before asymptotic behavior is reached 

by a dynamical system, transients of considerable duration can occur. Also 

shown in Figure 9 is the variation of the range of sea surface temperature 

and dew point temperature as calculated in the model. The tails of trails of 

the distribution of the parameters differ from that of a normal population, 

but very long times, on the order of 104 years, are required to reach the 

outer edges of the attractor. There is, of course, no guarantee that in any 

single integration the system will reach the boundary of the attractor. A 

further consideration is the random roundoff noise generated in the computer 

integration. This noise will cause the calculated range to mimic a random 

variable. 

In a simple system, again one proposed by Lorenz (1984b), it does ap

pear possible to obtain bounds on the maximum dimensions of the attractor. 

Lorenz (1984b) labels the following set of three coupled nonlinear equations 

as the simplest possible general circulation model: 

dX - y2 _ Z2 - aX + aF 
dt -
dY 

XY -bXZ - Y +G 
dt -
dZ 

bXY +XZ -Z. 
dt 

-

The variable X represents the strength of the large-scale westerly-wind cur

rent or the geostrophically equivalent equatorial-pole temperature gradient, 

while Y and Z are the strengths of the cosine and sine phases of a chain of 

superposed waves (Lorenz, 1984b). The quadratic terms containing b rep

resent the translation of the waves by the western current. The remaining 
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quadratic terms represent a continual transfer of energy, except when X is 

negative, from the westerly flow to the waves. 

The principal external driving force, the contrast between equatorial 

and pole heating, acts directly on the zonal flow X and is represented by a 

F. A secondary driving force, dependent on the difference between oceans 

and continents, enters the equations through G. 

A section of the attractor for the Lorenz 84 model is displayed in Figure 10, 

which shows the range for the Z variable projected onto a plane including 

the Z axis and at an angle 8 to the X axis. The motion is centered about 

Z = 0 but otherwise offset in X and Y. 

We treat X, Y and Z, as coordinates in three-dimensional phase space. 

A rate of change of energy equation follows from the governing set by multi

plying.each by 2X,2Y, and 2Z, respectively and summing 

where R2 = X 2 + y2 + Z2 can be interpreted as the total energy - the sum 

of the kinetic, potential and internal energies. The right-hand side of the 

equation for Ii:" vanishes on an ellipsoid 

a(X _ F/2)'l + (Y _ G/2)'l + Z2 = aF'l: G
2

• 

The rate of change of energy outside the ellipsoid is negative. This implies 

that for any sphere centered on the origin in state space enclosing the el

lipsoid, orbits passing through points outside the sphere will eventually pass 

through the sphere and remain inside. The ellipsoid is centered at (F /2, G /2, 
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Figure 10. A section of the attractor for the Lorenz 3-variable model at a plane containing 
the z axis and at an angle of 1170 to the x axis. The parameters for the model 
are given in Table 2. 
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Table 2 

Maxima and Range for Variables Defined in Lorenz 
Lowest Order Central Circulation Model 

(F=8.0, G=1.0, a=0.25, b=4) 

Variable Maximum Minimum 

X 12.24 -0.12 
Y 3.06 -1.06 
Z 2.06 -2.06 

0) with the corresponding major axes (( aF:!G2 )1/2, (aF2tG2 )1/2, ( aF2
t

G2 )1/2). 

The maxima and minima for the state variables are given in Table 2 for 

initial conditions lying within the ellipsoid and for specific values of the con

stants F, G and a. For initial conditions lying within the ellipsoid defined by 

d:'2 = 0, aU orbits would be expected to remain within the ellipsoid, except 

for small inertial excursions, in the absence of noise. The ellipsoid provides 

the limits for values that can be taken on by the state variables. The con

stant b does not enter into the equation for the critical energy surface since 

b defines the strength by which the waves are carried by the zonal westerly 

current and does not alter the energy of the system. 

The above analysis provides bounds on the maxima, minima and range 

attained by the state variables but provides no estimate of the average time 

required for a state variable to reach the boundary of the attractor. The only 

time scale within the systems of equations is determined by the constant a, 

the inverse of the decay time for the zonal current. Lorenz (1984b) assumes 
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a decay time for the zonal current of 20 days by selecting a=0.25 and taking 

5 days as the unit time. 

A numerical trial employing the constants shown in Table 2, taking the 

time unit to be 6 hours, averaging over 2.5 days and integrating from 34.25 

years (5,000 points) yielded a variation in the X coordinate shown in Figure 11. 

The power spectrum and autocorrelation function for X, equivalent to 

the equator-pole temperature difference, are shown in Figures 12 and 13. 

The power spectrum displays .nuch mo!"e structure than the Lorenz 27-

variable model even though there is only one time scale that enters through 

the constant a. The distribution of values of X departs markedly from that 

a normal distribution (see Figure 14) in contrast to the Lorenz 27-variable 

model. 

The maximum range observed in the data for X is 2.98, well within the 

limits shown in Table 2. In fact, in this particular run, the calculated orbits 

did not explore the outer edges of the attractor for the state variable X. The 

variation of the maximum range with time for X normalized to zero mean 

and unit variance is shown in Figure 15. Unlike the the Lorenz 27-variable 

model, the maximum range does not continue to climb with time but levels 

of well within the limits set by the critical energy surface. 

The Y and Z state variables show similar behavior. The variation of Z 

with time is shown in Figure 16. The histogram (Figure 17) for the Z vari

able shows large deviation from a normal population. The range levels off 

with the maximum observed range of 4.17 (see Figure 18) slightly exceeding 

the maximum range expected for the Z variable of 4.12 (see Table 2). An 
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figure 11. Variation of the Lorenz 3-variable model X coordinate (X is the equatorial-pole 
temperature gradient) with time for 12.500 days. 
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figure 12. Power spectrum for state variable X in Lorenz 3-variable model. The data are 
normalized to zero mean and unit variance. 
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Figure 14. The distribution of value for the X state variable in the Lorenz 3-variable model. 
The data have been normalized to zero mean and unit variance. 
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figure 15. Variation of the range of the state variable X in the Lorenz 3-variable model. 
The data are nonnaJized to zero mean and unit variance. The dotted line is 
the range expected for values chosen from a normal population with unit 
variance and zero mean. 
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Figure 16. Variation of the Z state variable with time for the Lorenz 3-variable model. 
The unit of time is 2.5 days. 
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Figure 18. Range for the Z state variable in the Lorenz 1984 model. Data have been 
normalized to unit variance and ZE!"O mean. The curve represents expected 
range for a normaJly distributed var:able. 
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observation of a value for the range slightly in excess of the ma.ximum pre

dicted range is not unexpected, since inertia will carry the the orbit outward 

before the- inward pull of the attractor brings the orbit back within the limits 

of the critical energy surface. 

The above example illustrates that it is possible to predict the maximum 

range of variables in a complex nonlinear system provided the equations are 

known. The limitation to the range of values which variables can assume 

likely comes from the conservation equations governing the motion. The 

time scale over which the maximum value may be attained is not determined 

by the above analysis. 

7.3 Extremes for a Climate Model with a Linear In
crease in Temperat ure 

Levine etal., (1990) describe a version of the Lorenz 27~variable model 

in which the solar insolation is increased linearly with time leading to an 

increase of global temperature of 10° over a 1000~year period. The resulting 

temperature record is shown in Figure 19. The calculated variance is 9.24, 

which can be broken down into the part due to the linear increase and (72, 

the variance about the linearly increasing mean. 

N 2b2 
Var ~ __ +(72 

12 
(72 _ 0.235 

where N is the number of years and b is the rate of temperature increase. 
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Figure 19. Global average temperature for Lorenz 27-variable model of the atmosphere 
in which the parameter corresponding to the insolation is increased linearly 
in time to provide an approximately tOO( increase in temperature over 
1000 years. 
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The residual temperature curve after removing a trend by least squares 

is shown in Figure 20 with a distribution of the residuals approximating a 

norm"'} distribution (see Figure 21). The maximum range after 1000 years 

for the residuals approximates the range expected by drawing variates from a 

normal population (see Figure 22). The removal of a trend before analyzing 

for extremes is a useful way of examining records of global average, surface air 

temperature records. There is a high probability that these records contain 

a linear trend (Levine et a1. 1990). 

7.4 Distribution of Extremes for Global Average Tem
perature Record 

Our final example of an application of extreme value theory is to an an-

nual average, global surface air temperature record. Three research groups 

(Jones, 1988; Hansen and Lebedeff, 1987, 1988; and Vinnikow et aI., 1990) 

Ita\,(' produced similar analyses of hemispheric surface temperature variations 

from somewhat differing initial data sets. The longest of the data sets is that 

of Jones (1988) and we will use it in the analysis. An analysis of the Hansen

Lebedeff (1987,1988) series (see Figure 1) produced results similar to those 

obtained from the Jones record. The Jones global average temperature vari

ation is shown in Figure 23, which can be compared with Figure 1. Both 

figures show a relatively cool late 19th century followed by warming inter

rupted by cooling in the 1940-70 period (see Levine et aI., 1990). The power 

spectrum for the Jones (1988) surface air temperature records is shown in 

Figure 24. The distribution of values for the Jones record is shown in Figure 25. 
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Figure 20. Residual temperatures after removing the trend by a least squares fit from 
Figure 17. 
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Figure 21. Distribution of values of the temperature for record shown in Figure 18. 
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Jones (1988). 

54 

1990 



5~--------------------------------------------------------

o 

-5 

-10 

-15 

-20~--------~----------~----------~----------~--------~ 0.0 0.1 0.2 0.3 0.4 

Frequency (cpyr) 

Figure 24. Power spectrum for the global annual average surface air temperature record 
shown in Figure 23. The data have been normalized to zero mean and unit 
variance. 
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The distribution differs from a normal distribution by being Hatter. This 

is consistent with the observed trend of increasing temperature displayed in 

Figure 23 (a straight line would exhibit a uniform distribution of values). 

The range for the Jones record (see Figure 23) is shown in Figure 26. The 

deviations again are in the direction expected by a record containing a linear 

trend. 

If a trend determined by least squares (slope = 0.28°C/century) is re

moved from the record, the resulting temperature residuals exhibit a his

togram that closely approximates a normal distribution (see Figure 27). The 

tails of the distribution also approximate those of a normal variate, as is illus

trated in Figure 28, which shows the variation of the range with time for the 

record exhibited in Figure 23 from which a linear trend has been removed. 

The above analysis leads to the conclusion that once the linear trend 

is removed from the observed record, the distribution of the residuals both 

about the mean and in the tails approximates a normal distribution. In the 

Lorenz 27 -variable system we observed chaotic behavior which led to a ran

dom (normally distributed) variation even over time scales of thousands of 

years. The observed data, even when temporally and spatially averaged, ex

hibit similar behavior. These observations suggest the possibility of chaotic 

noise at low frequency with important implications for predictability. In par

ticular, records of less than 1000 years may show statistics indistinguishable 

from a random series (once trends assumed to be deterministic have been 

removed). Prediction, outside of the trend, may thus be impossible except in 
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Figure 23. 
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figure 27. Histogram for the global annual average surface air temperature record after 
removal of a trend determined by a least squares fit. The residuals have been 
normalized to unit variance. The dotted line is the expected distribution of a 
normal variate. 
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a normally distributed variate. 
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a statistical sense. Similar considerations hold for models. The models may 

generate series that for time scales of a 1000 years have statistics identical 

to those of a random series. Using the models for deterministic prediction 

would in this case not be possible. 
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8 EFFECT OF A SHIFT OF THE MEAN 
ON THE FREQUENCY OF EXTREMES 

The consensus view is that the greenhouse effect will bring about an 

overall warming of the planet, together with increased precipitation. But it 

is also anticipated that there will be strong regional variations with some 

regions cooling and others receiving less precipitation. The primary effect of 

these changes will be to shift the mean although there may also be changes 

in the variance other than those resulting from trends. The shift in mean can 

cause a large change in the probability of extreme events, as is evident from 

Figure 2. If over 100 years a particular climate parameter shifts by one-half 

a standard deviation toward lower or higher values, the initial probability 

of 0.5 becomes 0.05 or 0.95, respectively. The large-scale wind, temperature 

and moisture patterns in the atmosphere and the land and ocean changes 

associated with them undergo variations at all time scales from hours to bil

lions of years. Some long-term changes have their origin in events that are 

external to the atmosphere-ocean system, such as variation in the earth's 

orbital parameters, volcanic explosions and changes in atmospheric compo

sition. These long-term changes can accentuate or ameliorate the impact of 

shorter-term fluctuations which have their origin in chaotic noise. Alterna

tively, long-period chaotic noise might alter the local mean and carrys the 

short term fluctuations so that extreme values are reached. In this section we 

briefly consider the effect of shifts of the mean on the frequency of extremes. 

The events of the Little Ice Age illustrate the impact of shifts in the 
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mean on extreme events. Parry and Carter (1985) have examined in detail 

the effect of short-term cool spells during the Little Ice Age on marginal 

agriculture in southwestern Scotland. In particular, they showed that small 

changes in the mean temperature associ::..ted with the Little Ice Age increased 

the frequency of damaging weather. Further, the probability of two successive 

bad years is even more sensitive to changes in the mean. The importance 

of successive extremes lies in their cumulative impact: a.n agricultural region 

may be able to understand a single shock, but if buffer stores are depleted 

by one bad season, a second one in succession may be far more devastating. 

The longest available temperature record available to us is the one com

piled by Manley (1974) for Central England from several discontinuous series. 

The record shows a number of isolated cool years (1740, 1782, 1860, 1979, 

1922) and a clustering of two, three, or even more extremes in successive 

years (1673-75, 1688-98,1838-40, 1887-88, 1891-92) as indicated in Figure 29. 

During the clustering of several cool summers in a row, when the tem

perature was marginal for the growth of oats, the farms at higher elevations 

in Scotland suffered greatly. One cool period, which persisted from 1688 to 

1698, led to the abandonment of most of the farms above 300 m (Parry and 

Carter, 1985). Indeed, the "Seven Ice Years" of the 1690s caused catastrophe 

among rural populations in all of Northern Europe. 

The effect of a change in the mean on the probability of an extreme event 

can be understood from a simple statistical model. The probability that 

some climate parameter (e.g., summer temperature, spring precipitation) 

falls above or below some threshold value for damage is PI' In a stable climate 
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Figure 29. Variations in yearly awrage temperature in Central England. After Manley 
(1973). 
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regime the return period for the damaging event is PiJ years. Suppose that 

the climate shifts in such a way that the mean of the climate parameter 

shifts by X standard deviations toward the threshold value and that the 

climate parameter is normally distributed. The ratio of the probability in 

the shifted regime to that in the original regime, PsI PI, is a highly non

linear function of the shift of the mean, as is shown in Figures 30 and 31. 

If the initial probability is PI = 0.05 (a return period of 20 years) and the 

mean is shifted by one standard deviation toward the threshold, then the 

subsequent probability is Ps ~ 0.25, or a return period of four years. The 

probability of two successive years 0; an event with a return period of 20 

years is only 1 in 400 in the initial state but moves to 1 in 16 in the shifted 

state. For example, the standard deviation for the temperature record of 

central England is 0.58°C, with a mean for the 1659-1977 period of 9.1°C. 

A decrease in the mean to 8.5°C would alter the probability of a once-in-

100 years cool year to a once-in-12-years event. The long~period fluctuation 

in climate that comprised the Little Ice Age increased the probability of a 

short-term cool summer, making a sequence of successive cool summers much 

more likely than in the preceding or subsequent years. 

Changes in the frequency of extreme high or low temperature, or of 

high or low precipitation, can be expected as climate shifts in response to 

greenhouse warming. The observed change in global average temperature of 

about 0.5° over the last century represents a shift of 2.3 standard deviations, 

making the probability of extremely warm global average years significantly 

higher. 
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9 SUMMARY 

The statistical theory of extreme events can be applied in numerous 

ways to problems in climate change. Calculation of the range as a function 

of time can be used to detect the presence of a trend. The value of using 

extreme events in this application is that since they are rare, extreme events 

can be treated as independent without any assumption with respect to the 

underlying distribution. Analysis of the global annual average temperature 

record using extreme events and analysis based on an assumptions of an 

underlying normal distribution both confirm the existence of a trend with 

high odds (l05 - 106 ) in favor of the trend hypothesis. 

Analysis of observed long-term global annual average surface air tem

perature records and of model results show that both kinds of records are 

indistinguishable from a series of normally distributed variates once a trend is 

removed. For both kinds of records, the statistics approach those of normally 

distributed variates about the mean and in the tails of the distribution. For 

model results, this conclusion holds even for series that are several thousand 

years long. These observations cast doubt on the use of General Circulation 

Models to predict future climate deterministically . 

The behavior of extreme values in nonlinear systems can be understood 

in terms of the physical dimensions of the underlying attractor. If the govern

ing equations contain conservation laws, the outer boundary of the attractor 

lies within a manifold. The dimensions of the manifold define the limits to 
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the extreme values. 
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