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SPEECH SURCH 

1.0 

All of these appear to be 

representative of typical problems n the 

decided to view them as paradigms a 

have a look at, bighly no~v~~, 

cDonald, and Ror.S­
had another ~o at some 

yet 

devise, or at least 

In the course of this repo t, ~ wi! describe several of the 

ideas we have co~ up with. 

1h~s. 
~ ~ report falls naturally into two arts. 

contains''''ome" 1>erl~~heral rematka on the, use 0 ~rrect~at1st1cs in 

speech modeling, introduces a fairl general etting for non-linear 

modeling of speech wave ome considerations 
i 

relevant to dete~in1ng the paramet rs 'f the 
r 1 

non-linear modeling. The OV...,. 
..----7 major thrust 'of this portion, howev r, is the introduction and 



~ .. 
description of many of the properties of the bispe~trum of time 

signals. While related to the or~inary spectrum, the bispectrum 

captures many additional features of the signal. Bispectral analysis 

has already proven useful in the analysis of water waves and seismic 

signals; there is every reason to hope that it will be a valuable tool 

in speech research.-=> ,,-

~r6..!-t f\'Jo 
!IN 4Ee6fRI pof'fron c:sr the lapol r- introduces. a novel procedure 

for estilDating the LPC c.oefficients of a waveform. It Is based on the 

observation that a given filter transfer function MS many 

.9-w-real1zations,tfn" auto-regressive lIodeling,'eaeh of which suggest 

different methods of finding the coefficients. It serves, for one 

thing, to explain fully why running the waveform backwards 

essentially the same coefficients as running it forwards. 

Th_re was some additional speech related activity; due 

prIncIpally to W. Press, with an appendix by o •. Rot'M .. U';, but t.his 

material is being published separately. 

During .the course of our summer study, we bad the opportunity 

to talk proflta~ly with visitors, two from CRD: Lee Neuwirth and Allen 

P\lr1tz, and CJ':~ from NSA: Edward P. Neuburg. We thank them aU for 

their useful comments. 
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2.0 NON-LINBAR SPEECH MODELING A~ BISPEc.J RAL l\NALYSIS 

2.1 Introduction 

The mathematical modeling of speech fer such applications as 

word or speaker recognition has been ntensive y studied over the past 

twent~ years. The most intense effor WaS undcubtedly the speech 

program sponsored by ARPA in the 1970~ Which WeS terminated in 1977 with 

the clalm of succe.ss. Five years lat ~r it is (lear that the methods 

developed fail wbenapplied to such p~oblems as automated word spotting 

on a noisy channel with uncooperat1ve speakers. Another, perhaps even 

simpler problem where available techn ques alsc fall, is in 

automatically discriminating between wo ,speakE~s on a noisy channel 

with the speakers having different vo ce ~haracteristlcs. The problem 

is further simplified in that at any net1me ope and only one speaker 

is speaking. What is required is a t me series .arking the times when 

the speakers change. 

Current methods are successf.l when th~ speech is highly 
i 

constrained; the vocabulary is limitec tola few hundred words, the 

speakers voice characteri$tics are kncwn,' the s mantics are well 

specified and the environment is char~ ctetized I)y low noise levels. 

There appears to be a number of reasol s why cur ent methods fail when 

applied to the kinds of problems desci ibed In t ~e above paragraph. 
( 
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1. The signal processing techniques are almost entirely linear 

up to the .11gital decision, e.g •• whether a fermat was present or not. 

Yet it is well known that the hue-an mech3nisms for producing speech 

contain non-linear elements(l) and the litera~ure on the psychophysics 

oi de,tection of beats estc.blishes that within the hUman auditory sy;,t,em 

there are some processes that imply envelope ~etection. 

2. The current speech algorithms are almost all based on using 

m1nimUDl least squares as a meaSl.lre cf goodness of fit. (2) It is well 

known that the use of such a nora puts a heavy emphasis on "outliers" 

and increases the vulnerability of the algorithms to distortion by 

noise. We cio not know of any exploratory effort to US~ other nol"~, for 

exa.ple~ a~solute mean deviations, nor to adapt1v~ly a4ter measures of 

goodness in response t·;, changing s1~nal to noise conditions. 

3. Spectral method~ used in speech analysis are those that 

have been Widely used and whose deficien~ie8 have only recently been 

recognized. In theee methods, in ordp.r to obtain a reliable est,iute of 

the power spectrum where noise is present, there is a smoothing of the 

autocovariance function by a time domai~ window before its Fourier 

transform is taken or equivalently th~ squared magnitude of the, Fourier 

tranSform :s smoothed. These methods have two grave deficiencies. The 

slIOOtbinR altert' the pi!ysicallymeasur~d quantities; the data is 

deliberately distorted for mathematical simplicity. Secondly, there is 

the implied assumption that the autocovariance vanishes ovtside the time 

period which i8 being analyzed. In themaxlmum entropy 8pectral 

4 



analysis (MESA), the estimator use all lags without smoothing by 

assWling maximum uncertainty about the time eries outside the period 

under analysis.(3) In the Maximum Likelihoo Method of spectral 

analysis the· window Is computed at every fre uency in such a way that it 

adapts itself to the signal plus n ise under analysis.(4) We do not 

know of the exploitation of these in the analysis of 

speech. This is surprising they are optimal estimators for 

autoregressive (all pole) time ser classical techniques are 

more appropriate for·mo~ing ave rag time series. 

4. It is universally ass that be $tatistics of speech can 

be described using parametric stat 

assu,ed that the statistics of spe The highly 

structured nature· of speech makes hese assu ptions highly 

questio>nable. In speech as in IIIln other ar as of statistical analysis 

it is assumed that a mnor error i tical model causes only a 

small error in the does not always 

hold true. During the past two de ades it 
I 

increasingly clear 

that common statistical procedures pa~ticul rly those optimized for an 

underlying Gaussian distribution, ngly sensitive to seemingly 

&dnor deviations fra. the assumpti n.(5). ese comments are ciosely 

allied to comment 2 above. We kno of no lication of non-parametric 

statistics or robust methods to th analysis of speech. 

• A geophysiCist, Harold Jeffreys of' Bayes an fame, was well aware of 
these considerations and had a fun ing: battl with the most fallous of all 
statisticians, Ronald Fischer, on his point in the 19208 and 1930s. 
Today'e statisticians are slowly r discoveri Jeffrey's results. 

5 



The above points in fact are the outline of what could be an 

extensive speech research program. In this note, we consider only the 

firs t point by. examining one method for analyzing the non-linear 

characteristics of speech. 

6 
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3.0 REPRESENTATION OF ~ON-LINE ~ SYSTEMS 
, 

A possible matheatical DIO el for sp~ech 1s one in which an 

input signal x(t) is operated on y a "blaclt box" which foI'llS x(t) 

into th~ actual speech y(t). For the; purpo~es of the DIOdel the black . 
box 1s assumed to be t1me invarlant (stat1onar,y) and the input x(t) 

has a finite power 

where 2T 1s the duration uf the i put. A general functional 

representation of the output yet) can be wt~tten as 

+ ••.• • .0.2) 

Such a representation was tudiied in detail by Volterra(6) in 

the early 20th Century and extended Loist;.ttistical problems by 

Weiner. (7) 

We need not concern oursel eswith tllte ~xact domain of validity 

of such an expansion, though the al ~rtreadel will recognize lts 

7 

I 



relation to the Wierstrass Approximation ~eorem. For the purposes of 

the present treat.ent; the functions hi in Equation (3.2) can be 

considered generalized functions, and contain delta functions and 

der.ivatives thereof.(8) With this genera~~ty available, there is no 

point ~etting the black box depend on the derivatives of the input 

x(t) , since this can now be absorbed into the kernels hi· 

Even .ore crit~cally, if we are working perforce with discrete 

inputs and outputs, derivatives are replaced by finite differences- ' 

The leading tera on the right hand side of Equation (3.2) is 

the basi. of the linear exaalnation of speech aDd _ny other proble.s in 

signal processing. 'lbe higher order teras have received ,far less 

attention, though Wiener's and Volterra's work has recently been treated 

in detail bY Schetzen(9) and Rugh.(lO) 

The .ost natural case to consider in speech .odeling, since it 

is next .ost difficult to the linear, is to assu.e the functional 

depends on x(t) only up to the quadratic teras: 

We .. y assulle without lOSing generality that h2 is a 

s,..etric function of its arguments. This being done, the filt~r 

functions hi and 112 .. , be extracted in a variety of vays. One 

8 
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method, for example, is to look at scaled up ottput for scaled down 

excitation, since, regarding yet) u a funct onal of x{t), we may 

I/rite 

f hI{t) x{t-t)dt· 1 m ly[£x t)] • 
£ • 0 £: 

An alternative procedure is to note hat 

2 f hI (t) x{t-t)dT· [x(t)] -: ,.[-x(t)] • 

In actual practice, the las suggests a way of pulling the 

(3.4) 

(3.5) 

linear part of the filter out of the speech signal, though it requires 

us to, assume that the glottal pulse ~citat10n has a very high power at 

the fundamental frequency relative t the powe~ at the harmonics. For' 

with this assumption, - x(t) is ap roximately . x{t) translated by 

half a pitch perIod. 

With the linear part known, we 'know }~ subtraction the quantity 

and then 

( 



where xl and x2 are independent and arbitrary excitations,· can be 

obtained by the familiar process of polarizing a quadratic form to get 

the underlying symmetric bilinear form. 

The mathematical procedure above is probably not the one to use 

in practice. The proper procedure is probably to assume the excitation, 

and then get h
2

(T
I

,T
2

) by Fourier analysis. 
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4.0 FREQUENCY DOMAIN REPRESENTATI bN C>F NOm INEAR SYSTEMS 

The linear impulse function let) has a corresponding 

transfer function in t.he frequency dom in, L(f), defined by 

Similarly, the quadratic impulse funct on b2(t ,t2) bas an allied 

transfer function Q(f l .f2) given by 

(4.1) 

assuming that the integrals in Equaticrns (4.1) nd (4 •. 2) exist. Higher 

order terms in the functional expansio~ in Equa ion (3.2) will similarly 

have associated with them higher orde] transfer functions. 

The analysis of linear systeu s has bee 1 greatly aided by the 

fact that convolution in the time do~in is equ valent to multiplication 

in the frequency domain. A similar rE sult holdlJ for nonlinear systems 

except that multiple order transforma ioop must be used. If 
i 

x(t l •••• , t n) is an integrable dete~nistic ,unction tben its 

transform pairs are 

11 



•••• t ) . n 

2Wi(fltl + ••• f t ) 
e n n dtl' dt ••• , n 

If x(t) is a stochastic function, these integrals are replaced by 

Fourier-Stieltjes integrals. 

The value of the higher order transform theory lies in that 

has an nth order transform 

For example, the quadratic term in Equation (2.2), 

(4.3) 

will have in the frequency domain the corresponding relation 

12 



.......... _ ........ -.---~--~--

We are, of course, interested only in the spec a1 case· tl· t2 

which is the quadratic term in the fupcttona1 4 xpansion ill Equation 

(3.2). 

In constructing mathematical models fer speech, one should 

inquire as to whether the higher ,orde!;. functiolJals in Equation (3.2) are 

of significance. We can explore this question by examining the higher 

order statistics of the speech Signal yet) • We assume that yet) is 

a stationary random function of time; any trenc s have been removed prior 

to analysis. The spectral representa ioli of . (t)' is given ,by the 

Fourier-Stieltjes integral 

• 

The ordinary (second order) spectr~l ~ensity 0 yet) is defined by 

P(f)df .. E[dZ(f)d~(-f)] (4.4) 

The power spectrum P(f) is related to the au ocovariance function 

R(t) 

1 



where R(t)' is defined by the ensemble mean 

or 

R(t) • E[y(t)y(t + T)] 

I 
R(t) =-

2T 

T 
f y(t)y(t+ T)dt 

-T 

if time averaging' 1s equivalent tO,ensemble ,averaging. 

Higher order spect,ral densities can similarly bedef,iiled. In 

particular the third order or bispectral density B(fI.f2) isdefined 

by 

(4.5) 

with f 1 + £2 +f3 • 0 • 

The bispectrum B(f l ,f2) is related to the ensemble average of 

the third order lagged product by 

where 

14 



Equations (4.4) and (4.5) pr vid~ insi~ht into,the 

interpretation of the spectrum and bi pectra. ~he spectrum represents 

the contribution to the mean square 2(t) ,frcPt the product of two 

Fourier components whose frequencies dd to zerp. The bispectrum 

represents the contribution to the me n cube ftpm the product of those 

three Fourier components whose result ntfrequepcy is zero. 

Equations (4.4) and (4.5) Ie d immediately to the symmetry 

relations for 'the spectrum and bispec rWlt, 

P(f) • PC-f) 

The spectrum is real and is determine by its '~lues on the half line. 

The bi8p~ctrum is complex dnd is dete mined by the values in an octane; 

for example 0 < fl < • t 0 < f2 < fl • 

15 



The dimensionless ratio 

E(y3) 

[E(i)]3/2 

18 called the skewness and is usually finite for non-GaussLan 

processes. A related ratio for the bispectrum, called ~'.coherel;'cy is: 

where f3- -f l -f2. It may be computed in practice as follows. Pa~8 

the signal yet) through t.hree band pass fUters centered at flJf2. 

and (-f1-f2) re8p~ctively, each with baud width A • to get three new 

signals Yl(t), Y2(t). Y3(t) respectively. 

Then the ratio 

is (approximately) the blcoherency time~ 1:. 1/2 • Narrowing the filter 

width I:. is equivalent to time averaging over increasing time interals 

III:. • 

16 
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5.0 SOME T01 PROBLEMS 

In order to acquire some in uitlon abput the blspecttum, its 

properties and ~ossible applications we consl~er four simple problems. 

First, let J:- assume we havt a signal process yet) derived 

from an excitation process x(t) by yet) ~ J h(T) X(t-T) dT. If we 

now assume we can compute the bispeclra from t~e Fourier transform of 

lagged triple ~.roducts by time averal ing" then we obtain by a simple 

formal manipulc,tion (which would pro ably be h~rd to justify in all 

details): 

(5.1) 

.where Bx and By are the bispectr of input and output processes 
A 

respectively and H is the Fourier ransform pf the filter, i.e., 

The important relation (5.1 already ~gins to show us some of 

the utility of the bispectrum. Unli ~ t:he power spectrum, we see that 
; 

the bispectrum of the.output process de~nds on tile phase relations in 

the Fourier transform of the filter unction. 

1 ' 
I 



Carrying the analysis a little further, let us note that the 

triple lagged correlation for Gaussian white noise is identically zero, 

hence the bispectrum of Gaussian white noise is zero. We conclude: 

o The bispectrum of linearly filtered Gaussian white noise 

1s zero. 

o To the extent fricative sounds may be.modeled on linearly 

filtered Gaussian noise, we expect then they have zero 

bisp~ctrum. 

o The b1spectru~ of a pure sinusoidal signal is zero. On 

the other hand, the bispectrum of the glottal pitch 

excitation will only show peaks at pairs of frequencies, 

each of which are multiples of the fundamental 

frequency. This ~tudy suggests that the bispectrum of 

voiced sounds will show peaks along certain lines 

radiating from the origin. 

Next, consider a signal x(t) that consists of two cosine 

waves wi~h differing frequencies and phase· 

The signal is passed through a quadratic device to yield ·a new signal 

yet) 

18 
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I' 

• I 

2 
yet) - x (t) 

which can be written as 

122 2 
y(t)- '2 (A +B ) + (A /~) cps [2 (21rfl-l .)] 

The squaring operation thuS produces ~ DC comp nent, 1/2(A2 + B2) , 

components at twice the frequencies jinitially lire sent and heterodyne. 

'frequencies at £1 + £2 and fi - £~ • i Such elationships with 

conespondlng phase relation information:wo""ld readily be picked up in a 

bispectral analysis. 

The next example consists OJ passing ~on-Gaussian white noise 

through a linear device. Consider a stochasti process x(t) with the 

following properties 

1 I 



E[x{t)] = 0 

3 . 
E[x (t)] • B 

The characteristics of the linear device are given by the impulse 

response function h(~) or its corresponding transfer function 

B{f) • The spectral densit1 of the process yet) 

is then 

y(t) • f h{t)x{t - t)dt 

2 
P(f) • IH(f)1 

and the bispectral density is 

We next consider a Poisson process. The generated process 1s 

of the form 

20 



••• , x , 
I\. 

••• a e the times of events 

for a Poisson process with 

The transfer function H(f) is define~ by 

The spectral and bispectral densities are the9. 

P (f) • .!. IH(f)1
2 

1I 

The last two examples 1llustI ate that lifferent processes can 

yield similar bispectral. A normalized b1spect um. the bicoherency is 

defined by 

~c • ------+----!--

and 1.& U( t:ful in many applications. J or the ea~e of the Poisson process 

1/2 
Be • lll) 

21 
; ; 

I : , I 

i 

~ 

• 

H( -f 1-£2) 

IH(-£1-f2)1 



which exhibits the phase relations between the frequencies whichsatlsfy 

the requirement 

~or the case of non-Gaussian noise passed through a linear 

device we have that 

H( fil H(f2) R( -fef2) • 
• 

IR( -f I-f2) 1 
Be • B • IH(f1)I IH(f2)1 

As a final example we consider a Gauss1a~ p~ocess with zero 

mean and unit variance 

E [x(t» - 0 
2 

E[x(t) ] • 1 

with a spectral' density X(f) • We pass the Gaussian process through a 

nonlinear device. Let x(t) be operated on by the nonlinear devIce to 

provide a new process y(t) 

y(t) • N(x(t») • 

If N Is odd In the variable t 

N(t) • -N(-t) 

22 
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then thebispectr'lm vanishes so that t would n~t be possible to 

distinguish between a signal x(t) 0 erated on by N and Gaussian 

noise. For the analysis of odd nonli ear opera ors we must examine the 

higher order terms in Equation 3.2. ~ternativaly, if N contains even 

terms, for example 

yet) - x(t) + a x (t) 

then the bispectrum no longer vartishe. The process has a spectral 

density 

2 
. pet) • X(f) + 2a J X( ) XCi-g) dg 

and a bispectral density 

For a Gaussian process 

vanishes for all T1 and T2. Thus if t~e bisJectrum of yet) is not 

identically zero then the process Is not Gauss an. 



6.0 NUMERICAL COMPUTATIONS 

In actual nUmerical calculations of real time series a number 

of computational approaches to estimating the bispectrum have been 

employed. In the earliest applications, narrow band filtering (complex 

demodulation) plus averaging in the time domain was used{ll,l2 , l}). 

Haubrich(14) obtained estimates by averaging over several records and 

Brillinger and Rosenblatt{lS) averaged over the frequency domain. With 

the wide spread use of the Fast Fourier Transform (FFT), averaging over 

the frequency domain has become more popular.(16) However, the 

computational aspects of bispectral analysis are still in their infancy 

as well as the statistical character of the bispectral estimates. 

Because of this we will rev '# the three principal approaches to the 

estimation of the bispectrum. 

With digital sampling at interval 6t • energy associated with 

frequencies greater than the Nyquist frequency 

appear in the power spectrum in the alias of a lower frequency. It is 

convenient in numerical work to refer all frequenci~8to the 

dimensionless Nyquist units f/fN • To avoid aliasing in the power 

spectrum. one must sample at a rate sufficient to assure that the 

cumulative spectral density above the unit Nyquist frequency is very 

24 
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much lower than for frequencies below t~e unit N quist frequency. 

Similarly, to avoid aliasing in the bispectrum, he bispectrum must be 

saall for all frequencies - f 1, f2 outEide the r gion If 1 + f21 < 1 

where fl and f2 are measured in Nycuist unit.. The restriction of 

this region to the octant 0 < fl < 1, 0 < f2 < Fl yields a triangular 

region in fl, f2 space with the inte val 0 < Fl < 1 as a base line 

and the point (1/2, 1/2) as the apex For· a t me series sampled at 

equal time intervals, this triangular egion completely defines the 

bispectrum. 

High frequencies are often re oved froD a time serielEl by low 

pass filter. If this procedure is ada)ted, carE must be taken tC' avoid 

phase distortion since the bispectrum ~s a mean~ of investigating phase 

relations in stochatic processes. For example, if filters of the 

autoregressive type are to be used, th~n they slould be run twice in 

opposite directions. 

In general, the bi'spectrum.i~ estimate over some bandwidth 

• The number of time samples No' require to estimate the 

bispectrum wi~h a frequency interval 6 1s at Least 

N ",.J.... • 
o 6t6 

The total length of the record N ca be' writt en 

N '" MN o 

25 : 
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where for ease of use of the FFT, N should be a power of 2 and M is 

preferably an odd integer. It should be noted that the common practice 

of adding zeros to make N a power of two should be" avoided since this 

distorts the real data. If points need to be filled in, then maximum 

entropy methods should be employed, or alternatively, one should allow 

overlap between consecutive records. If one wishes to cover the entire 

triangular region 0 < fl < 1, If 1 + f21 < 1 with estimates spaced at 

intervals 6 , then thebispectrum must be evaluate~ at at least 

N~/16 points. 

For a given time series, the first step in numerically 

evaluating the bispectrum is to subtract the mean from all values and 

remove any linear trend. In order to use the computational advantages 

of the FFT the time series should be windowed or tapered by multiplying 

by a function that smoothly decays to zero at both ends of the "time 

series. A number of techniques for tapering have" been suggested in the 

literature(17) of the form 

y'(t) - C(t/N) yet) - C(T) yet) • 

A widely used family of tapers is the cosine taper defined by 

C(T) • 1/2 (1 - cos! T) for 0 ( T < a a 

- 1 a < T < 1 - a 

'" 1/2f 1 - cos!. (l-T)], 1 - a < T ,1 • 
'" a 

26 



For a. 1/2 , there is full tapering and the tapering is termed the 

Hanning window. 

Tapering before taking the F uder trCinsform. has the advantage 

of reducing the leakage of spectral p ales to flequencies far away but: ·it 

coarsens the spectral resolution by a factor of (1 - a) for the cosine 

tapers. Tapering has the further dis dvantage of changing the 

expectation and variances of the'esti~tes of he spectral and 

bispectral densities. Huber et al.(IS) show tlat tapering increases the 

variance of the spectral andbispectril densit es by approximate factors 

of D4D2-2 and D6D3-2 respectively where 

for large values of M (see Equation 5.~). Fer M'" 1 Huber et a1. 

find 

-2 35 a .. 1/2 D4D2 "" 
18 

'" 
1 67 +- ai .. ~ for small a 

64 

-2 231 
a:a 1/2 D6D3 "" 

100 

,. 1 + 615 a ~ .... for small a • 
512 

27 
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The Hanning taper increases the variance of bispectral estimate by a 
factor of 2.31. It is thus desirable to increase N, the length of the 

record,reducing a keeping Na constant,' since this reduces the 

leakage of power from the spectral peaks.(18) 

Leakage remains a serious problem even after windowing if the 

spectral peaks are several decibels above the mean spectral density. 

This problem is a particular problem for spectra that vary as the 

inverse frequency, a behavior that is found in many natural phenomenon. 

After tapering in the time domain use of the FFT yields 

Y{f)- = y .! N~1 Yt e-2wi{kt/N) 0 ( k < N/2 
k N t-o 

where Yt denote the N discretely sampled values 

• 

The frequency f is determined by k since 

f a k/NAt • kA/M • 

The estimated power spectral density in the band Af is then 
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This relation indica\:es the importance ofselecling a relatively high 

value for K so that a number of valu~s of Yk enter into the 

estimation of P(f) • 

The estimation of the bispect roal !idensi y can proceed in a 

number of ways. If the averaging 1s o"er quadr~tic window then 

L t 
-t t Y y' ~ 

jl- -L j2- -L jl+ kl ji+ k2 -j1- j2- k1- k2 
(6.2) 

Huber et al.(18) suggest averaging over a symet ical hexagonal window 

such that 

A 2 4i 
B(f1,f2) A a t Yj ~ Y k Y j j k k 

3 M2 + 1 '} + 11.1 j2 + 2 - C 2- l~ 2 

where the summation is taken over all val,es of jl and j2 that 

satisfy the conditions 

/j11 < L t P2/ ~ L ~ PI j2\ < L • 
; 

It would appear that (6.3) is probabl th~ most efficient way of 

computing the bispectrum. 

29 
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Most of the sampling properties that have been analyzed are 

asymptotic'< 15) A detailed discussion of the asymptotic behavior of 

blsrectral estimates is given by Lii et al.(19) The covariance of two 

complex variables X and Y can be written as 

* * cov (X,Y) • ~(XY ) - E(X) E(Y ) 

. where y* is the complex conjugate of Y. The variance of Y is then 

var(Y) - cov (Y,Y) 

,. 
and the asymptotic variance of the bispectral estimate B (fl'~2) is 

where N is the total length of the record (Eq. 5.1) so that 

,. 
and the asymptotic variance of the estimate of the bicoherency Bc is 

... 
var(Bc) 

1 
=--

... 
if the statistical variability of the denominator of Bc is neglected, a 

quadratic window is used and there is no tapering. The effects of 

tapering on the variance of the estimates have already been 
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considered. If hexagonal windows(18) a e used t en the.above variances 

must be multiplied by 

4 . - . 
3 

I 
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7.0 APPLICATIONS OF BISPECTRAL ANALYSIS 

The notion that frequency representation for a cumulant might 

be useful is probably due to Kolmogorov as ackr.owledged by 

Shiryaev.(20) Tukey(2l,22) independently recognized the value of the 

information that could be derived from blspectral analysis. The first 

actual calculation of the bispectrum was on data of the height of ocean 

waves(ll). Since then ·there have been a number of exploratory efforts 

in a nwaber of fields, not including speech. The analysis of· the ocean 

waves prior to breaking seemed to show a non-linear behavior that was 

predicted by the Havier-Stokes equations. The authors concluded that 

the bispectr~ analysis in this field confirmed the theoretical 

predictions oftbe shape of weakly non-linear waves. (11). 

In an exploratory investigation of seasonal weather patterns, 

MacDonald indicated that bispectral analysis showed a strong non-linear 

interaction between the band at a cycle per year and the higher 

harmonics at low latitudes but no such interaction at high 

·latitudes.(l2) .There has been no further work along these lines • 

. Preliminary investIgations have been made of non-linear interaction in 

the generation of mlcrose1sells(l4) and of "pearl" oscUlations in 

geomagnetic data(23) but again these studies have not led to a greater 

understanding of the phenomenon of interest. As a result of a 

bispectral analysiS, there has been the suggestion that certain peaks in 

the spectra of the great ChUean and Alaskan earthquakes arise from the 
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interaction of different modes of fre os,dUat ions of the earth. (24) 

Cartwright(25) used bispectral analys s to exauine the interaction of 

ti4es with the continuum ocean spect~ m. Rodet and Bendiker(26) have 

examined profiles of oceanic variable using bi~pectral techniques. 

Outside of geophysics, bisp~ tral analysis has been applied in 
! 

a number of fields. Lit et ale (19) e tam1!ned t\ rbulence at high 

velocities and Reynolds number to aho ~ that the contribution of 

wavenumber triplets to the rate of vo tiefty ploduction and spectral 

transfer are non-local in cbaracter. Lu~ey SEd Takeuchi(27) and 

ReIland et a1.(28) have also applied )ispectral methods to the analysis 

of turbulence. Hasselman(29) showed hat the ton-linear transfer 

function 'for a ship'DlOving in irregul~r tlaves can be obtained from 

bispectral estimates. In a bispectra analysis of eletroencephalogram 

Signals, Barnett et'al.(30) find that significant quadratic coupling 

between components making up the elec roencephalogram occured only for 

awake subjects having a high level of alpha activity. Godfrey( 13) had 

indicated the usefulness of bispectra a~lysis in detecting nonlinear 

behavior of economic time series. 

An important application bis ~ect:rum atl alysis bas been described 

by Sato et a1.(31) The noise of gear in a machine are recorded 

acoustically. .1 the normal state of operaUotl the noise exhibits a 

nonvanishing bispectrum because of th inherent nonlinearities of the 

machine. As scores develop on the ge r,rfaces, the modulus of the 

bispectrum decrease as the noise gene at~d by the randOl"'. imper£ect!ons 
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in the gears increases. A conventional power spectrum analysis would 

fail to detect' the enhancement of the noise since the principle 

harmonics would be present but only slightly broadened by the noise. 

This provides a method of determining the wear on the gears without 

actual direct inspection of the gears. 
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8.0 CONJECTURES REGARDING THE APP .. ICATION( F BISPECTRAL ANALYSIS TO 
SPEECH. 

Despite the numerous applicat ons of b spectral analysis to a 

wide variety of problems, bispectral mathods ha,e not been employed in 

the analysis of speech. The speech si~nal cleally contains nonlinear 

components; for example, the fricative!. almost lurely involve the 

. " 

interaction of noise with .. he signal wllich might be primitively modeled 

by 

where x
t

· is the slgna1 at time t and Et 1 the "noise." The first 

conjecture about speech Is that the bispectrum hows signi~icant 

structural properties. 

One important application of bis,ectrulI analysis, if indeed the 

bispectrUII of speech is nonvanishing, is to use bispectral analysis to 

determine whether or not a magnetic tiipe which ~ontalns speech and noise .. . 

is worth ke~plng if high noise levels were intr)duced when the speech 

was recorded or noise is due to the a.ing of th tape or processing of 

the tape. This application 1s suggesled by the work of Sato et 

a1.(31) A means of testing this conjEctire 1s ~o record nois~ free 
:. 

the recordjng ~ntil he speech beC(IIeS 

I 
the bispect rumi at th~ variouS. stages of 

\ 

speech, add white noise to 

unintelligible and qeasure 

intelligibility degradation. Using tt Is .eans rot may be possible to 
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distinguish between those tapes that should be kept for further analysis 

and those that can be destroyed without loss of recoverable information. 

A ·~condconjecture is that two speakers will have voice 

characteristics that have different bispectra because of differences in 

vocal chord structure and geometry of the mouth, nose and larynx. If 

this conjecture i8 true, then it should be·possible to di8tinguish which 

of two, or more, speakers is talking at only one time estimating the 

bispectra using digital or analog real t.ime estimates. 

A third problem relates to word recognition. To date word 

recognition aethods have depended ve~ heavily on the· use of linear 

methods, particularly linear predictive coding (LPC). It .. y turn out 

that the nonlinear aspects of word recognition are of significance. For 

word spotting, the blspect~ may be useful. 
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PART U 

9.0 A "NOVEL" VIEW OF LlNEARl'REOICTlVE CODING. 

9.1 IntroJuction 

In the typical set-up for linear predictive coding (LPC), we 

start with a (not necessarily causal) relation between excitation' u 

and output s of the form 

• 
s .. I an~kUk • 
n k--

One forms, at a purely formal level, the Laurent series: 
• • • 

Sex) - L s xn , H(x) - L a xn , U(x) 8 L u xn , to get _ n _ n _ n 

Sex) .. H(x) U(x) , a relation which is true at the level of formal 

Lauren,t series, but not necessarily at the level of function, as we will 

show in a moment. 

For technical convenience, we will assume that the excitation 

is finitely supported, so that the series for U(x) makes sense as a 

function. (In somewhat greater generality, we cOlild permit the 

excitation to be such that U(x) is analytic except at zero and 

infinity). 

In practical applications, it is often assumed that the filter 

transfer H(x) is actually a rational function, or has a very "good" 
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approximation by a rational function~ which ~places it in further 

discussion. We will make the same a~sumption 

The filter is called minimuln phase i all the poles of H(x) , 

except possibly for a pole at zero, are :outsi e the unit circle. 

In auto-regressive (AR) mod~l1ngt or all p~le modeling, it is 

assumed that H(x) is the reciproca of a po ynomial, except 'for a 

stray power of x, which is absorbe:l into thE excitation, because we 

are free to choose time n. 0 independently in excitation and output. 

We are free to assume, then, that H x) • ~, where 
P(x) 

} kk-l .L. p(x • ~x + ~_lx + ••• + a1x T 1. By changing polarity and gain 

in the excitation if necessary, we uay even a SUllie c· 1 • 

From this point on we assullle that H x} 
, 1 

:a_ , 

P(x) 
as with P(x} 

above. 

9.2 How does the typical analysis procee from this point? One 

simply notes that p(x) Sex} • U(x) , so that 

and given a (patch of) Signal, one EStimates ~he a's by a familiar least 

squares residual error procedure, wlich:comes down to solving k linear 

equations for unknown coefficients all: a2, •• , ak • 
i 

1 



Let's make this a little ,Iuore precise. For convenience in 

exposition, we assume,a bilaterally infinite slgnaloutput is given. 

(This is the so-called auto-correlation method). We will assume 

additionally that the ~)tal signal energy r s 2 is finite, so the 
n -auto-covariance r(p)"! s s also exists 'for all p. This is the _ n n-p 

same as saying that at the level of formal Laurent series, 
CD 

R(x) .. r rep) xP .. Sex) S(l/x), • -
We then seek numbers Yl' Y2'.'" Yk so as to minimize 

n--
2 

~sn + (y 1 8n- 1 + ••• + YkSn-k)J 

Putting in a dummy variable y J held equal to +1, this comes 
o 

to minimizing the quadratic form 

which boils down to solving the linear system: 

j - 1, 2, .", k • 

y r(j-i) .. -r(j) 
i . 

If we define the polynomial (with variable coefficients) by 
k 

Y(x) = I y XV , Y .. 1 J then our linear system of equations says 
v""O v 0 

simply that the formal Laurent series Y(x) R(x) has vanishing 

coefficients for the first through kth power of x. 
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Note that Y(x)R(x) c Y(x)S~x)S(l/x) For a given Laurent 

series L(x) let us agree that L(x = o(xP) p) I , means that the 

coefficients of x, x2, ••• , xP are all zero. In this notation, our 

linear system of equations is simplr the requirement: 

Y(x)S(x)S(l/x) • o(xk) , with the bjund~ry co~dition yeo) = y • 1. o 

There are a few facts worth noting he~e. 

(1) The residual square er or is the constant coefficient 

in Y(x) Y(l/x) Sex) S 1/x) • 

(2) Running the signal bac wards is ~qui valent to replacing 

Sex) by S(l/x), and so does not ~lter the equation for 

Y(x). 

(3) As is known, Y(x) alwa s has all.of its zero outside the 

unit circle. 

1 
(4) Computing sex) = --1- U(~) us:lng. power series for -

P(x) . 
about the origin will ~~v~: a 

P(x) 
cat sal relation between 

output and excitation i.d. the signal depends on earlier 

values of the excitati~n. 

(5) The signal computed by (4~ has finite energy if and only 

if P(x) has all of its ze~os outside the unit circle. (We 

mean the statement to ~pp~y to ~ll finitely supported 

excitations). 



(6) if the signal is computed as in (4) and P(x) has its zeros 

outside the unit circle, then the solution Y(x) to our 

linear system Y(x) Sex) S(I/x) - o(xk) will be 

Y(x) • P(x) if the excitation consists of a single 

pulse, approximately so if the excitation consists of 

widely separated approximately equal pulses, but otherwise 

will be generally quite different from P(x). 

9.3 All of thig is quite familiar, except possibly for our 

notation. What we have to note that is, we believe, new is that there 

are many relations between excitation and output for which 

P(x) Sex) ~ U(x) , over and above the one described in (4) of the 

previous section. 

. This is quite easy to see. 1 

p(x) 
has a convergent Laurent 

series expansion in the annular region lying between any two consecutive 

zeros of P(x) • Using such an expansion gives a linear relation 

between excitation and output which is ~efinitely non-causal, i.e., the 

signal depends on the remote future of the excitation. 

If we take the Laurent expansion beyond the last zero of P(x), 

we obtain a "pure" non-causal filter, i.e., the signal depends only on 

the future of the excitation. The other Laurent expansions give 

dependence of signal both on future and past. 
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For a signal sex) compute by: any cine of the Laurent series 

above, we always have P(x) Sex) .. u x). T*s observation raises a 

number of interesting questions. Fo emost am(ng these is the 

following: When we are modeling by ~C using a least square residue 

criterion, how do we know which of t e various realizations of the 

filter we are really getting? Of eq·~l import~nce 1s:. can one conceive 

of filters which realistically opera e.1n the non-causal modes described 

above? 

Let's address the second qu stions f rs(. Here we will simply 

be argumentative, leaving it to the ~eader to decide how convincing our 

_ argument is. In the formation of tM speech ~ ignal, it is clear that 

the brain and central nervous system is :well Clhead in time of the actual 

muscular articulation and glottal ex itation. So the nervous· system is 

in a position to modify the signal o~ t~e bas s of excitation yet in the 

future. Now some will argue that th ~ time sCClle of neural pulses 1s 

large compared to glottal pulses. B t the br~in and central nervous 

system are large scale parallel proc~ssors, wj th lots of feedback, so it 

is not altogether inconceivable that so~ ant cipatory signal teformdng 

is carried on. At the same time, fr~m ~he po nt of view of ear-brain 

received signal processing, it is qUlLte!plaus ble that the signal for 

brain interpretation is reformed out of:the rlceived signal by looking 

both forwards and backwards in time, at 'a fin. temporal resolution. 

, 
i 
I 

Whether or not the reader tis c~nvincj d by these arguments, he 

will shortly see that our wilUngnes~ t~ look at the non-causal versions 
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of the filter give- ' .. some extra processing power that we did not have 

before, without any serious increase in processing cost. Moreover, we 

feel that we have better ways of recovering non-miniiDum-phase filt~rs • 

Now let's have a look at the first question. We think that the 

answer is simply that you do not, and you have to keep an open mind. If 

we really had a bilaterally infinite Signal, then it is possible to tell 

from the annulus of convergen.ce of sex) something of what is going 

on. But, of course, we are never 1n that situation. 

Before proceeding further, it is useful for us to introduce a 

little additional notation. We will call a finite Laurent series which 

goes forwar·! no further than the kth power of x and backward no 

further than the tth power of 1 a [k, I.] polynomial. If the 
'i 

coefficients of 112 (!r" and 2 xk all (x) , (x) , ••• J x,x , •••• are 

zero in a Laurent series Lex) , we will write L(x) • o(x[k,t]) • 

Now, let's look at the realization of our filter in which 

1 is. expanded in a series beyond the last zero of 
P(x) 

P(x) • Here, we . 

will find that sn is given linearly in terms of 

un' un+l' un+2' ••• , etc. It is clear that the natural way to model 

this situation is to assume that 

• 2 

[Sn + (b i sn+l + b2 $n+2 + ••• + bk Sn+k)] 
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In terms of the notation just introduced" this ~ils down to solving the 

linear system: 

Z(x) S(x) S(l/x) O(~[O,k]) 

where Z(x) is a [o,k] polynomial ~th; const~nt coefficient equal to 1. 

The reader will recall from ec. 9.2 tlhe polynomial Y(x) 

which solved Y(x) s(x) S(l/x) •. O(xk • t It it; then clear that 

Z(x) ,. Y(l/x) , and that our squared est:dual Error is' the same in both 

cases. ltis important to note, howelrer" that our inferred relation 

between signal and excitation is not he same n both cases, since one 

is "pure" causal filtering, the other "pure" nl n-casual filtering. 

We still have to determine 11 pw 40 modI 1 the remaining 

realizations of the filter. In these cases, i seems natural and 

plausible to suppose that 

s .' -('c S + c2 s I., + I + c s . n . 1 0-1 n- i" ! •• • p n-p 

p + q - k, and to choose the c's and d's SO as to minimize 

4 
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This boils down to solving the linear system 

W(x) Sex) S(l/x) z o(x[p,q]) J 

where W(x) 1s a (p,q] polynomial with constant coefficient equal.to 

1. There is an obvious relation between the solutions for the pair 

[p,q] and the pair (q,p] J which has the following important 

consequence. If k is even then the solution W(x) for the pair 

[p,p] J P - k/2 has the property W(x) - W(I/x). Hence, we have only 

to solve k/2 linear equations, rather than k linear equations, which 

can be a·substantial savings. 

It 1s clear that if we go forward p places and backwards p 

places, we will get a smaller residual error than if we simply went 

. forward p places, because we have more free variables over which to 

minimize. Yet in both cases we have only p linear equations to 

solve •. We may lose the advantage conferred by having a Toeplitz system 

to which the method of Levinson applies, but in the covariance method 

with finite signal patch, this method does not strictly apply anyhow. 

We also want to note for future reference that in the case of a 

general pair [p,q] J with solution W(x) , the residual square errQr is 

the constant term in the Laurent series for Vex) WeI/x) Sex) S(l/x) • 
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9.4 We want to draw some conclus ons, bas d on our above 

discussion, for LPC modeling. 

Suppose we have a signal and excitati ns related by 

Sex) .. -..!.- U(x) , f the various 
P(x) 

realizations 'of the filter we with. If it were known 

in advance that all. the zeros are ou side the unit circle, 

then probably conventional LPC model But suppose the 

filter is notmlnimom phase. rgument, let us suppose 

that no zero of P(x) lles on the Then for all the 

modelings of the filter there is one nd'only ne ·for which the signal 

has finite energy--namely the one in i~h the annular region of 

convergence of ~ includes the u This then, is the only 
. P(x) 

realization 1n which it makes sense talk ab ut the auto-correlation 

and the power spectrum of the It is q ite possible that the 

assorted methods for estimating the to~corre ation from a finite patch 

of signal, such as windowing, maxim or maximum likelihood, 

are implicitly assuming that realiza ionjof th filter for which the 

power spectr\llll exists.. (We have not inV~St1ga ed this interesting and 

possibly quite illportant question). 

We do not generally know in advance, f course, whether our 

filter· 1s lllinimum phase. this stron 1y ~ugges s to us that the best 

general method of LPC modeling is to P1ct·. a su table value of k, and 

go forward k steps and backward k st ps. isis to say, we assume , 

that 

4 , 
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and minimize the residual square error as before. Whether or not we 

have an infinite signal, we l118y assume ci .. di ' so we still have' 

only k linear equations to solve, and we will clearly get a smaller 

residual square error than if we· had carried out conventional k step 

LPC !1lnalysis. 

The fact that we have a smaller residual error suggests that 

this .ore general aodeling can be incorporated into a considerably 

improved data coapression system. One might, for exaaple, find the 

c's (hence the d's), find the derived excitation, trans~tting both, 

and reform the 8igna1at the other end by solving for sntk in ter.& of 

the excitation un and earlier values of the signal. 

For the purpose of using ~ur generalized LPC .adeling in word 

recognition, some method of scoring teaplate against sign~l is needed. 

We believe a simple lIOdification of the Itakura procedure should work 

here. 

9.5 Ve will finally make a few remarks about the behavior of 

residual square error for general LPC modeling as opposed to 

conventional. To this end, suppose we have a polynoalal P{x}, 

P(x) • 1 + a1x + ••• + ak xk , with all its roots outside the unit 

so 



_____ .oo· 

. ---o---~-_l--~_+----------,-----,,....-____. 

circle and the signal we are analyz ngis givlen by S(x). ~ U(x) , 

where --1- is expanded as a power series alout the ,origin. Su;pose 
P(x) 

for this signal we tried a general [k,k] Lf~ modeling. What will we 

find, and what will the residual er or be? 

For the sake of our argume t, yet st~ll to give us a general 

idea of what's going on, we suppose the excU~tion consists of a single 

unit pulse at n· 0 ,so U(x)·' 1 • 

For OUT more general model ng,; we seek a [k,k] polynomial 

W(x) , constant coefficient one, au h that 

W(x) Sex) SCI/x) • o(x[k,kJ). No P(x) pel/x) Sex) S(l/x) - I , so 

2 2 2 I Th if c - 1 + al + a1 + ••• + ak ' th n W(x)· c P(x) P(l/x). e 

residual square error being the con taut term in ' W(x)W(l/x)Sfx)S(l/x), 

we find it to be {, a substantial improvmen over the error of 1 in 

conventional LPC modeling. 

1 ! , 

• 
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