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1.0 INTRODUCTION
J A small JASON study group—- Degpain,
\ LA
picked up the cudgels again inAsumm rﬁ1982 an
(S

MacDonald, and Ro;7/n

d had another go at some

speech problems. }The pfoblems-ns‘a dre#sed,

continuous spee

ere word spotting in

automatic diseri

Y

representative of typical problems 4

ation between a Jait of ‘sp

All of these appear to be v
n the fie

decided to view them as paradigums a

In the course of this repont, we wil

ideas we have come up with.

/)\tS

~  The report falls naturally into two

- contains-~gome’ peripheral rémarks on

ery: diffl

the: use of

éséjgpeaker recognition, speec 1ntelli§;bility, and
J .

akers:\

cult prgblems indeed, yet
cordingly, we

ht to;devise, or at least

iedgmethodologiés which might prove

1 describe several of the

parts.

J statistics in

orrect

speech modeling, introduces a fairly general $etting for non-linear

modeling of speech wave forms, toget

relevant to determining the parameters of the

!

major thrust of this portion, however; is the

L l

her  with some considerations

non~linear modeling. The

iatroduction and ——" ‘)




description of many of the propefties of the bispectrum of time
signals. While relatéd to the or@inary spectrum, the bispectrum
c#ptures many additional features of the signal. Bispectral analysis
has 2lready proven useful in the analysis of water waves‘and seismic
signals; there is every.reason to hope that it will be a valuable tool
in speech researiE;;:>
T Pl hwe
PwgwweesNT poTEIon of theTeport introduces a novel procedure
‘for estimating thé LPC coefficiénts of a ﬁavefofm. It is based on the
observation that a given filter transfer function 533 many
%tealizations'gi; auto-regressive modeling, .each of which suggest -
different methods of finding the coefficients. It serves, for oné
thing, to explain fully why running the waveform backwards gives

esgentially the same coefficients as running it forwards. (/‘}::F1j>

‘Th.re was some additional speech related activity; due
principally to W. Preés, with an appendix by O. Rotuaus, but this

material is being published separately.

During the course of our summer study, we had thé-oppértuniry
to talk profitably with visicdfs, two from CRD: Lee Neuwirth and Allen
Poritz, and ¢i2 from NSA: Edward P. Neuburg. We thank them all for

their useful comments.




PART

2.1 Introduction
The mathematical modeling of
word or speaker recoganition has been

twenty years. The most intense effof

NON-LINEAR SPEECH MODELING Ahn BISPEC]

speech  fq

fntensivel

3

-

was undd

RAL ANALYSIS

r such applications as '
v studied over the past

ubtedly the speech

program sponsored by ARPA in the 1970#'wh1ch was terminated in 1977 with

the claim of success. Five years latfr it is ¢

developed fail when applied to such p
on a noisy channel with uncooperative
simpler problem where availablé techn]
automatically discriminating between

with the speakers having differeut‘voi

roblems as
speakers.

lques also

lce charac]

lear that the methods
automated word spotting
Another, perhaps even

.fail, 1is in

Ewo speakers on a noisy channel

teristics. The problem

is further simplified in that at an} ¢gne time one and only one speaker

is speaking. What is required is a tf

the speakers change.

Current nethods are successfu

constrained; the vocabulary is limited

lme series

to?a’few

marking the times when

1 when thL speech is highly

hundred words, the

speakers voice characteristics are kn&wn,?the sénantics are well

specified and the environment is chardcterized
There appears to be a number of reasors why cur

applied to the kinds of problems destibed int

3

by low noise levels.
rent methods fail when

he above paragraph.




1. The signal érocessiﬁg techniques are almo#t entirely linear
up to the digital decision, e.g., whether a format was present or note
Yet it is well known that ;he huran mech;uiéms for produéing speech
contain non-linear elements(l) and the literature on the psychophysics
of detection of heats estzblishes that within the human auditory sy-iem

there are some processes that imply envelope detection.

2. The current speech algorithms are almost all bﬁsed on using
‘mininum least squares as a measure cf goodness cf.fit.(z) It is well
known that the use of such a'norn puts a>heavy emphasis on "outliers"
and increases the vulnerability of the algorithms to distortion by .
noigse. We do not kaow of‘any'exp;oratory effort to use other noris, for
example, ahsolute mean deviations, nor to adaptivily aater ngasutes'of

goodness in response to changing signal to noise conditicans.

3. Spectral methods used in speeéh analysis are those.that
have been widely used and whose deficiencies have only recently been
tecogn:zed.‘_lh these methiods, in order to obtain a reliable es;inhte of
the power spectrum where noise iz present, there is a smoothing of the
autocovariance function by a time'donaip window before its Fourier
transform is taken or equivalently the squared magnitude of the Fourier
transtorm I8 énoothed; These methods have two grave deficiencies. Thg
smootiaing altery the pi:ysically measured quantities; the data is
deliberately distorted for mathematical sigplicity. Secondly, there is
the implied assumption that the autocovarianée vanishes ovtside the time

period which is being analyzed. In the maximum entroby spectral

4




adapts itself to the signal plus nd

_know of the exploitation of these t

analysis (MESA), the estimator useg
assuming maximum uncertainty about
under analysis.(3) In the Maximum

analysis-the'winddw is computed at

speech. This is surprising iun that
autoregressive (all pole) time geri

more appropriate for moving average

|

all lags

without smoothing by

the time Leries outside the period

Likelihood Method of spectral

every fre
ise under
ech@1§ue3
th;y are
es while

(all zer

4. It is universally assdmed;that

quency in such a way that it
analysis.(4) We do not

in the analysis of

optimal estimators for

the classical techniques are

ps) time series.

the statistics of speech can

be described using parametric statistics. Indeed, it is commonly

assutwed that the statistics of spe

ch are Ga

structured nature of speech makes these assu

ussian. The highly

.ptions highly

questionable. In speech as in man ‘other areas of statistical analysis

it is assumed that a minor error i

small error in the final results.

the mathematical wmodel causes only a

Unfortuna

tely this does not always

hold true. During the past two décadeg it has become increasingly clear

that common statistical procedures,

pakticulkrly those optimized for an

underlying Gaussian distributidn, are exceed

ingly sensitive to seemingly

minor deviations from the assumptian.(5)* These comments are closely

allied to comment 2 above. We knoy of no ap

statistics or robust methods to thT

- statisticians, Ronald Fischer, on

* A geophysicist, Harold Jeffreys,

these considerations and had a runE

Today’s statisticians are slowly r

analyéis
i
of Bayes

his point
discoveri

plication of non-parametric

of speech.

fan fawe, was well aware of

ing battle with the most famous of all

in the 1920s and 1930s.
ng Jeffrey’s results.




The above points in fact are the outline of what could be an
extensive speech research program. In this note, we consider only the
first point by examining one method for analyiing the non-linear |

characteristics of speech.




3.0

A possible mathesatical model for sp

REPRESENTATION OF NON-LINE:

R SYSTEMS

ech 1s one iu which an

input signal x(t) is operated on Ty a "black box" which forms x(t)

into the actual speech y(t) . PFor
~box ig assumed to be time iavariant

has a finite power
LT

T

x2de <

where 2T is the duration of the igput. A

representation of the output y(t)

y(t) = f“hl(t) x(t-1)dt + [/ LNEN

v I'4
+ oo +'I ooov! hn‘tl’ cos

+ ..’.

Such a representation was sﬁud?ediin

the early 20th Century and extended

’ Weinér-(7)

We need not concecrn oursely

of such an expansion, though the alert

I

the purposes of the model the black

(st;tionaIry) and the input x(t)

(3.1)

:[netal fdnctional

can be wriitten as

1, ) x(t=1

l) x(t—tz)dtldtz

Pn)xxt-tl) soe x(t~in)dtl eos dTn

(3.2)

detail by volterra(6) in

to-%tatimtical probleas by

ves with the exact domain of vaitdity

reader| will recognize its




relation to the Wierstrass Approximation Theorem. For the purposeé of

the present treatment; the functions h; in Equation (3.2) can be

congidered generalized functions, and contain delta functions and
derivatives thereof.(s) With this generaasty available, there is no

point letting the black box depend on the derivatives of the input

x(t) , since this can now be absorbed into the kernels hj -

Even more criticglly, if we are working perforce éith discrete

inputs and outputs, derivatives are replaced by finite differences. .

The leading term on the right hand éidé of Equation (3.2) is
the basiszof the linear examfnation of speéch and iany other‘problens in
signal prbce;sing. The higher order terns have received far less
attentfon, though Wiemer’s and Volterra’s work has recently been treated

in detail by Schetzen(%) and Rugh.(10)

The most natural case to consider in speech modeling, since it
- 1s vext most difficult to the linear, is to assume the functional

depends on x(t) only up to the quadratic terms:

y(t) = | k (T)x(t~t)dT + ] hz(tl,xz)x(i-tl)x(t-tz)dtldtz
(3.3)

We may assume without losing generality that h, 1is a
symmetric function of its argumenis. This'being done, the filter

functions h; and hy may be extracted fn a variets of ways. One

8




method, for example, is to look at soaled up o

ekcitation, since, regarding y(t) 4s a funct

write

] hl(t) x(t-t)dt .
€

An alternative procedure is to note {

2 [ B (%) x(t-1)dr = )

In actual practice, the last

linear part of the filter out of the

us to assume that the glottal pulse éxcitation

tput foi scaled down

tonal of x(t) , we may

lﬂm l-y[extt)] . (3.4)
+0 ¢ '

hat:

[x(t)) - ylx(e)) - (3.5)

suggests| a way of pulling the
speech siPnal, though it requires:

has a very.high power at

the fundamental frequency relative-tT the power at the harmonics. For -

with this assumption, =~ x(t) is approximatel

half a pitch period.
With the linear part known,

/] hz(Tltz)vx(t—

and then

[] hé(11512)x1(

K

t-x%)#z(t-

y - x(t) translated by

we know by subtraction the quantity

l)éx(t;Tz dt,dt

1,)dt,dt, ,




where Xy and xp are indépendent and arbitrary excitations, can be
obtained by the familiar process of polarizing a quadratic form to get

the underlying symmetric bilinear form.
The mathematical procedure above is probably not the one to use

in practice. The proper.procedure is'probably to assume the excitation,

and then'get hz(tl,rz) by Fourier analysis.

10




4.0

The linear impulse function hl(tD has

transfer function in the frequency domgin,
: -2
hl(t) = [ L(f) e

Similarly, the quadratic impulse funct

transfer function Q(f;,f;) gliven by

by(r151y) = JJ Q(E0E,) @

assuming that the integrals in Equations (4.1) and (4.2) exist.

order terms in the functional expansion in Equaf

have associated with them higher orde
The analysis of linear syst

in the frequency.dbmain. A similar r

except that multiple order transformat

X(tl, eesy ty) 18 an integrable dete

transform pairs are

11

FREQUENCY DOMAIN REPRESENTATI

2nf

N

. —

"iftdf .

1 transfer

ion# must
|

rministic

OF NONL

L(f)

fon hz(T]

(Fy7y + £,75)

ems has bee
fact that convolution in the time do;]in 1s equ

INEAR SYSTEMS
a corresponding

, defined by

(4.1)

,12) has an allied

df df2 (4.2)

: 1
Higher
rion (3.2) will similarly

functions.

n gréatly aided By the

{valent to multiplication

sult holds for nonlinear systéms

be used. If

function then its




X(fl, cesy fn) = [ we | x(tl' veey tn]

20i(E.t, + ooo £t )
e 1 1 n n dtl, ed ey dtn

MO R | X(£,s woe £)
'-211(_‘:'1:1 toaer t £t )

nn
e dflooc, dfn

If x(t) 1is a stochastic function, these integrals are replaced by

Fourier-Stielt jes integrals.

The value of the higher order transform theory lies in that
1 ese Ihn(fl, ‘uco, ‘tn) X(tl' Tl, sevy tn" tn)d'rl.oo d'fn
has an nth order transform

Hn(fl,...., fz)‘v X(fl."..., fn) .

For example, the quadratic term in Equation (2.2),

y(tpsty) = [ by(r),1)) x(t,~ 1,) x(t,~1)dr dT,
(4.3)

will have in the frequency domain the corresponding relation

12




Yy(E:5)) = By(F;
We are, of course, interested only in
yo(8) = y,(t,t) = [ [ b,(1,

which is the quadratic term in the fu

(3.2).

In constructing mathematical

p£,) X(£, ]
the speci

,Tij x(t

models fq

X(£,) -

al case t; = t2

1) x(tv'_Tz) dr,dt,

nctional expansion ia Equation

r speech, one should

- inquire as to whether the higher.order fﬁactionals in Equation (3.2) are

of significance. We can explore this
order statistics of the épeech signal
a stationary random function of time;
to analysis. The spectral representa
Fourier-Stielt jes integral

y(t) = | a2"¥yz

" The ordinary (second order) spectral

P(f)df = E[dZ(f)d

The power spectrum P(f) 1s related

R(T1)

13

question
Y(t)‘ .
any trend

tion of y

(f)

z(-f)]

to ihe aut

denéity of

by examining the higher
We assume that y(t) is
8 have been removed prior

r(t) 1s given by the

y(t) 4is defined by
- (4.4)

tocovariance function




P(f) - I R(1)e Zﬂif't

where R(t) 1is defined by the ensemble mean
R(1) = E[y(t)y(t + 1)]

or

'r .
R(T) = — [ y(t)y(t + Dt
2

if time averaging is equivalent to ensemble -averaging.

Higher order spectral densities can similarly be defined. In
particular the third order or bispectral density B(flgfz) is defined

by

’ B( [, )df | df | E[dz(f,) dz(f,) ‘dz(f3)] | (4.5)

2"
with £, + fy+£3=0 .

The bispectrum B(f;,f,) 1is related to the ensemble average of

the third order lagged product by

-2ni(f, 1,+£,1,)
B(f,, f ) [ s(js1,) e 1l ‘2 2 dr,dr,

where

- 14




8(11,12) = E[y(t) y(?+11) y(t+i2)] .

Equations (4.4) and (4.5) pr?vidg insight into the

interpretation of the spectrum and bigpectra. [he spectrum represents

the contribution to the mean square 2(t-) ,frop the product of two

Pourler components whose frequencies 3dd to zerp. The bispectrum
represents the contribution to the mean cube from the product of those

three Pourier components whose resultdnc;ftequgncy is zero.

Equations (4.4) and (4.5) lead immediately to the symmetry

relations for the spectrum and bispectrum.
P(f) = P(-f)

and B(fl,fz)

B(f,,£,) = B(£,,~f ~f

)

L3

B(=£)~£,f)) = B(f2,~f1-f2)

B(~f}~f5,£3) o

The spectrum is real and is determined by its values on the half line.

The bispectrum is complex and is’determined by [the values in an octant;

for example 0 < f <=, 0<f, <f, .

15




The dimensionless ratio

E(y")
[e(y%) 12

18 called the skewness and is usually finite for non-Gaussian

processes.‘ A related ratio for the bispectrum, called bicohereucy is:

B(£,,f,)

[2(£,) B(t,) B(£5)]Y/?

where fq = -f; ~fj . It may be computed in practice as follows. Parcs
the signal y(t) through three band pass fiiters centered at £1,£2 »
and (-fl-fz) respectively, each with baud width A , to get three new

signals yl(t), yz(t),,y3(t) respectively.

Then the ratio

E(y)*,°75)

[=5%) E(y?) £(6D))Y?

is (approximately) the bicoherency times AI/Z o Narrowing the filter
width A is equivalent to time averaging over increasing time interals

1/a «

16




5.0 SOME TO: PROBLEMS

In order to acquire some int

properties and vossible applications

First, let i assume we haveg

from an excitation process> x(t) by

now assume we can compute the bispectra from t

lagged ttipie vroducts by time averaging, then

formal manipulstion (which would pro

details):

(7.5, = B(,, 5, )a(E, (£ )u(-f,

and By

respectively and ﬁ is the Fourier {

_where By

B(E) = [ h(1) e

The important reiation (5.1)
the utility of the bispectrum. Unlil
the bispectrum of the output process

the Fourier transform of the filter f

1y

are the bispectr$ of input

uition'abput the bispectrum, its

we consider four simple problems.

a éignal procéss y(t) derived

y(t) = f[|h(7) x(t=t) dv . If we
he Fourier ttansform of

we obtain by a simple

%_

ably be hard to justify in all

L

and output processes

ransform Pf the filter, i.e.,

"itf dt
already pegins to show us some of

te tpe'powpr spectrum, we see that

dep?nds on the phésé relations in

Ffunction.




Carrying the analysis a little further, let us note that the
triple lagged correlation for Gaussian white noise 15 identically zero,
" hence the bispectrum of Gaussian white noise is zero. Wé conclude:

o - The bispectrum of linearly filtered Gaussian white noise
is zero.

o To the extent fricative sounds may be modeled on linearly
filtered Gaussian noise, we expect then they havé zero
bispectrum.

o The bispectrum of A pure sinusoidal signal is zero. .On
the othet‘hand, the bispectfum of the glottal pitch
excitation_will qnly show peaks at pait§ of frequencies,
each of which are multiples of the fundamenﬁal
frequency. 'Tﬁis study suggests that the bispectrum of
vpiéed gsounds will show peaks along certain lines
radiating from the origin. |

: ~ Next, consider a signal x(t) that consists of two césine

waves with differing frequencies and phase
x(t) = A cos (2uf1t+¢l) + B cos (an2t+¢2]‘

The signal is passed through a quadratic device to yield a new signal

y(t)

18




y(t) = x2(t)

= A2c082(23f1;+¢1

+ 24B cos(2nf,t]

‘which can be written as

y(t) .-% (A2+32] + (A2/2) c

+ (32/2) cos[Z(Z’f2+“2)]

+ AB{c&s[Zn(f1+f2) +

+ cosf2n(£)~£,) + (orl-%)]l |

(¢j+4,)]

) +§Bzcos2

ps[2(21f +4)]

(2nf.2t+¢2)

e,) cos(2uf,t+s, )

The squaring operation thus produces b DC conponént, 1/2(A2 + 82,

" components at twicé the frequencies i

‘frequencies at £} + fo and f) - f3

correspouding phase relation informat]

bispectral analysis.

ion?woqld

nitially present and heterodyne.

. §Such telationships with

readily be picked up in a

The next example consists 6ﬂ passing Pon-Gaussian white noise

through a linear device. Consider a

following properties

1§

gtochastie

s process x(t) with the




E[x(t)] =0
E[xz(t)] =1
. 3 .

E[x(t)] =8
The characteristics of the linear device are given by the impulse
tésponse function h(T) or its corresponding transfer function
H(f) . The spectral density of the process y(t)

y(t) = [ h(t)x(t - 1)dt -
is then

. o,

B(£) = [H(E)|

and the bispectral demsity is

We next consider a Poisson process. The genetated process 1is

of the form

y(t) = E h(t-x, )

20




" are the times of events

where ... Xy +oe Xps 05 X5 oees x> vor

for a Poisson process with

B ) =¥

The transfer function H(f) is definefi by
h(t) = [ H(E) 2™ far .

The spectral and bispectral densities mre then.

P(ﬂ-%lMﬂF:

ﬂqxﬂ-%mﬁ]mg)Mffa,-

The last two examples illustrate that different processes can
yield simila: bispectral. A normalized bispectrum, the bicoherency is

defined by .

B(f,,8,)

Be = v
[2(¢,) B(£,) P(f;ffz)]llz

and is uteful in many applications; Hor the cage of the Poisson process

- H(f,) H(e,) | H(-f;~f,)
Bc = (u)llz {1 — .
IH(£, )1 VH(E,)!I 1H(~f £,

21




which exhibits the phase relations between the frequencies which-satisfy

the requirement

fl + fz + f3 =0 .

For the case of non-Gaussian noise passed through a linear

device we have that

H( ;) H(£,) u{-f,-£,)
"f RLICHT .4 18(£,)1 ‘. 1H(~£,-£,)1

As a final example we consider a Gaussian process with zero

mean and unit variance
_ -
E [x(t)] = 0 E[x(t)"] = 1
with a spectral’ density X(£) . We pass the Gaussian process through a

nonlinear device. Let x(t) be operated on by the nonlinear device to

provide a new process y(t)
y(t) = N[x(t)] .
If N 1is odd in the variable t

N(t) = -N(-t)

22




then the bispectrum vanishes so that 3

distinguish between a signal x(t) opferated on

noise.
higher order terms in Equation 3.2.

terms, for example

y(t) = x(t) + a x

then the bispectrum no longer vanisheg. The pr

‘density

CB(E) = X(E) + 2a° [ X({

and a bispeétral density

B(f),f,) = 2a[x(£,) X(£,) +

fl+f2

)

+ X(£,) X(
For a Gaussian process

Elyce) y(esm,) o

vanishes for all T and Ty o Thus i

identically zero then the process is

23

For the analysis of odd nonlir

4

[(t)

) X(f-s)

t+12)]

i tﬁe bisg

not:Gaussi

t would nf

ear. opera

bt be possible to
by N and Gaussian

tors we must examine the

[1ternatively, if N contains even

pcess has a spectral

1+f2)]

of fourth order .

ectrum of y{(t) 1s not

ane. .




6.0 NUMERICAL COMPUTATIONS

..In actual numerical calculations of teal‘time series a number
of computational approaches to estimating the bispectrum have been
employed. In the earliest applications, narrow band fiitering (complex
demodulation) plus averaging in the time domain was used(11,12,13),
Hanbrich(14) obtained ésfimates by averaging over several records and
Brillinger and-kosenblatt(ls) averaged over the frequency domain. with
the wide spread use of the Past Fourier Transform (FFT), averaging over
the frequenef domain has become more popular.(IG) -Bowéver, the
compﬁtational aspects of bispegttal_analysié are still in their infancy
as well as the statistical charﬁctet of the bispectrai estimates.

Because of this we will rev -4 the three principal approaches to the

estimation of the bispectrum.

With digital séﬁpling at interval At , energy associated with

frequencies greater than cﬁe Nyquist frequency
£, = (2at)7}
N )

appear in the power spectrum in the alias of a lower frequency. It is
convenient in numerical work to refer all frequencigs to the
dimensionless Nyquist units £/£y . To avoid aliasing in the power
gpectrum, one must sample at a rate sufficient to.assufe that the

cumulative spectral density above the unit Nyquist frequency is very
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much lower than for frequencies below the unit Nyquist ftequéncy.

Similarly, to avoid aliasing in the bis

ectrum, the bispectrum must be

small for all frequencies £, f3 out ide the region [f; + f5l < 1

 where f£; and fp are measured in Ny

this region to the octant 0 < f1 <1,
region in fl,'fz space with the intet

and the point (1/2, 1/2) as the apex.
bispectrum.

High,frequencies are often reT
pass filter. If this procedure is adap
phase distortion since the bispectrum {

relations in stochatic processes. For

uist anits. The restriction of
0 <‘f2 < E1 yields a triangular

val 0 < <1 as a base line

3
For a time series sampled at

equal time intervals, this triangular yegion com%letely defines the

oved from a time series by low
ted, care must be taken te avoid
8 a mean] of investigating phase

example, |if filters of the

autoregressive type are to be used, thpn they s@ould be run twice in

opposite directions.

In general, the bispectrum ig

A .« The number of time sémples No |»

estimated over some bandwidth

réquireT to estimate the

bispectruﬁ with a frequency interval |4 is at least

1

N X emm— .

°  ata

The total length of the record N cap

25

be writJen

(6.1)




where for ease of use of the FFT, N shdﬂld be a power of 2 and M 1is
prefetably'an odd integer. It shoﬁld be notea that the common practice
of adding zeros to mke N a powér of two should be avoided since this
distorts the real data. If points need to be filled in, then maximum

entropy methods should be employed, or alternatively, one should allow
overlap between consecutive records. If one wishes to cover the entire
i <1 with estimates spaced at

triangular region 0 < £, < 1, |fl + f

1 2
intervals A , then the bispectrum must be evaluated at at least

N§/16 points.

For a given time series, the first step in numerically
evaluating the bispectrum is to subtract the mean from all values and
remove any linear trend. In order té use the computational advanfages
of the FFT the tiﬁe series should be.windowed or tapered by multipiying
by a function that smoothly.decays to iérb.at both ends of the time
gseries. A number of techniques for tapering havé'been suggested in the

1iterature{17) of the form
y’(t) = C(t/N) y(t) = C(7) y(t) .
- A widely used éamily of tapetg is the cosine taper defiped by
o(r) = 1/2 {1 = cos = 1) for 0 <1 <
‘-1 a<f<1-a

=1/2{1—cos%(l-t)], l-bal<1:<1 N

2¢




For a= 1/2 , there is full tapering|and the tapering is termed the

Hanning window.

Tapering before taking the'F:urﬂer transform has the advantage
of reducing the leakage of spectral paaké to frequencies far away but it
coarsens the spectral resolution by a| factor of (1 - a) for the cosine
tapers. Tapering has ﬁhe further disédvgntage of changing the
eipectacion and variances of thg.estitates of the spectral and

)

bigpectral densities. Huber et al.(l ghow that tapering increases the .

variance of the spectral and,bispectrai densities by approximate factors

2

of D4D2'2 and DgD3 < respectively| where

!«
D, = | € ()dq
0

for large values of M (see Equation/ 5.1). For M = 1 Huber et al.

find

-2 35 S
D,D B e a 31/2
4P2 8 | 2
= 1 FLLAP Y for small a
64 '
100. :
= 1+5815 4 ﬂ vee for sméllva .

512

27




The Hanning téper ipcreases the variance of bispectral estimate by a
factor of 2.31. It ié thus desirable to increase N , the length of the
record, reducing a keeping Na constant,'éince this reduces the

(18)

leakage of power from the spectral peaks.

Leakage remaiﬁs a serious problem even after windowing 1f the
sﬁectral peaks are several decibels above the mean spectral density.
This problem is a particular problem for séectra‘that-vary as the
inverse frequency, a behavior that is found in many natural phenomenon.

After tapering in the time domain use of the FFT yields

1 N-1
Y(£) =Y, == I ¥

o 2mike/N) o oy <ny2
kN
t=0

t
where y, denote the N discretely sampléd values
gr Yo vo0s Ypo vo0 ¥ oy °
Thg frequenéy- f 1is degermiﬁed by k since
£ = k/NAt = ka/M .
Thé estimatéd power spectral density in the band Af 1s‘t§enb.
L

-~ . 2
P(E)A= T |Y M=2L+1 o
joni it
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This relation ihdicaues the importance

of :select

value for M so that a number of valups of Yk

estimation of P(f) .

The estimation of the bispect

i
i

ral%densit

enter into the

y can proceed in a

number of ways. If the averaging is oLer quadthic window then

: 2 _ 5 :
B (f,,£,) A" =B [k, * (Mat), k, (Nat)]
L L
=z L

Y
=L 3= I ky

a2

Y325+ k, )

. Huber et 31.(18) suggest averaging over a symetl

such that

2
4M

Mt +1

n 2
B(fl,fz) A = z Yj.

1

where the summation is taken over all

satisfy the conditions‘
BETRREN T

It would appear that (6.3) is probably

computing the bispectrum.
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values of

REN

thg_most

Stk Ky

Y .
+ kZ -j l'j 2—k 1-1(2
j; ané Ja that

F3,) < L .

efficient way of

ing‘a relatively high

(6.2)

rical hexagonal window

(6.3)




Most of the sampling proﬁerties that have been analyzed are
asymptotic.(ls) A detailed discussion of the asymptotic behavior of
bispectral estimates is given by Lii et al1.(19) The covariance of two

complex variables X and Y can be written as
: * *
cov (X,Y) = E(XY ) - E(X) E(Y )
. where Y* is the'complex conjugate of Y . Ihe variance of Y {is then
'vat(Y) = cov (Y,Y)
and the asymptotic variance of the bispectral estimate B (fx'fz) is
var [B [fl,fz)] --M-z- B(£,) B(£,) P(£,+£,)
where N 1is the total length of‘the record (Eq. 5.1) so that
tntr[B (fltfz)] ";Z P( 1) P(fz) P( 2)

and the asymptotic variance of the estimate of the bicoherency Bc is

var(Be) = -1-
MA

if the statistical variability of the denominator of Be is neglected. a
quadratic window is used and there is no- tapering. The effects of

tapering on the variance of the estimates have already been
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considered. If hexagonal windows (18) are used then the above variances
must be multiplied by
lmz . 4
3 *
3H2+ 1
an |
I




e e i, e e

7.0 APPLICA?IONS OF BISPECTRAL ANALYSIS

The notion that ftequency representation for a cumulant might
be useful is probably due to Kolmogorov as ackrowledged by
Shiryaev.(20) Tukey(21'22) independentlyefecognized the value of the
information that could be derived from bispectral analyeis. The first
actual calculation of the bispectrum was on data of the height of ocean
waves(ll). Since thenethere have been a ﬁumber ef exploreeoty efforts
in a number‘oflfields; not including speech. The analysis of the ocean
waves pridr to breaﬁing geemed to show a non-linear behavior that was
prediceee by the Navier;stokes equations. The authors concluded that.
the bispectrum analysis iﬁ this field_eonfirmed ;he.theoretical

predictions of the shape of weakly non-linear waves. (11)-

In an exploratory 1nvestigation of seasonal weather patterns,
HacDonald indicated that bispectral analysis showed a strong non-linear

interaction between the band ‘at a cycle per year and the higher

' harmonics at low letitudes but no such interaction at high
‘latitudes.(12) There has been no further work along these lines.

.Prelininary investigations have been made of non~linear iateraction in

the generation of aicroseisens(14) and of "pearl" oscillations in

geomagnetic data(23) pye again these studies have not led to a greater

understanding of the phenomenon of interest. As a result of a

bispectral analysis, there has been the suggestion_that certain peaks in

the spectra of the great Chilean and Alaskan earthquakes arise from the.
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interaction of different'modes of free.oscillationsAof the eatth.(24)

Cartwright(zs) used bispectral analys
tides with the continuum ocean spectr!

examined profiles of oceanic variable

Outside of geophysics, bispe

a number of fields. Lii et al.(l9) e

im. - Roden

using big

manﬁned tu

[s to examine the interaction of

and Bendiker(26) have

pectral techniques.

ttral analysis has been applied in
. |

rbulence at high

velocities and Reynolds number to shoy that the contribution of

wavenumber triplets to the rate of vo
trausfer are non-local in character.
Helland et 81;(28) have also aﬁplied

of turbulence. Hasselman(29) ghowed

function for a ship moving in irregular waves

bispeétral estimates. In a bispectra
signals, Barnett et‘al.(3°) fiod that
between components méking up the elec
awake subjects having a high level of
indicated the usefulness of bispectral

behavior of eéonomic time series.

rticity pr

bispectrall

that the

| analysis

significa

alpha act]

! aqalyﬁis

i

oduction and spectral

Luniley . and Thkenchi(27)'and

methods to the analysis

]on-lineat transfer

an be obtained from
of eletroencephalogram

nt quadratic coupling

troencephalogram occured only for

vity. Godfrey(13) had

in detecting nonlinear

An important application bispectrum analysis has beéu described

by Sato et al.(31) The noise of geirT in a wac

acoustically. a1 the normal state of

nonvanishing bispectrum because of the inherent

operation

hine are recorded

the noise exhibits a

nonlinearities of the

machine. As scores develop on the gear.iprfacas, the modulus of the:

bispectrum decrease as the noise gene

33
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in the geafs increases. A conventional power specctdm analysis would
fulmdautmemMmetﬁtMndmshthpdeh
harmonics would be present but only slightly broadened by the noise.
This provides a me;hod of determining the wear on the geats without

actual direct inspection of the gears.

34




8.0
.SPEECH. -

Despite the numerous applicat

CONJECTURES REGARDING THE APP

LICATION

F BISPECTRAL ANALYSIS TO

ions of bispectral analysis to a

wide variety of problems, bispectral mEthods have not been employed,ih

the analysis of speech.

components; for example, the fricative

The speech si

interaction of noise with .he signal wrich high

by

x =ax. f B x

where x,

" is the signal at time ¢t and

-1

t

€e-1 1

nal clearly contains nonlinear

almost surely involve the

be primitively modeled

o

£ . 14 the "noise.”" The first

conjecture about speech is that the bﬂspecttum Thows significant

structural properties.

One important application of
biepectrum of speech is nonvanishing,

detetmine whether or not a magnetic t

bisﬁectru

analysis, if indeed the

is to use | bispectral analysis to

pe which ontains speech and noise

- 1s worth keeping if high noise levels ere introduced when the speech

was recorded or noise is due to the a 1ng‘of'th

the tape. This application is suggesé

tape or processing of

ed by the|work of Sato et

al.(31) 4 means of testing this conJectiye is to record nois2 free

speech, add white noise to the recordi
unintelligible and measure the bispecﬁ

intelligibility degradation. Using th
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is means

g #ntil he speech beccmes

various stages of

It may be possible to




distinguish between those tapes that should be kept for further analysis

and those that can be destroyed without loss of recove:able information.

A -~cond conjecture is that two speakeis Qill have voice
characteristics that have different bispectra becaﬁée of differences in
vocal chord structure and geometry of the mouéﬁ, nésg and larynx. If
this conjecture is true, then it should be possible to distinguish which
of two, or more, speAkers is télking at only one time éstinating.the

bispectra using digital or anaiog real time estimates.

Alfhird problem relates to word recoguition. To date word
recognition methods have depended very heavily on the use of linear
. methods, particularly lineaf predictive coding (L?C). It may turn out
that the nonlinear aspects of word recognition are of significance. For

word spotting, the bispectrum may be useful.
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PART 1L

9.0 - " A YNOVELY VIEW OF LINEAR PREDICTIVE CODING.
9.1 -Introduction

In the typical set-up for 1linear predictive coding (LPC), we
start with a (not necessarily causal) relation between excitation ‘u

and output s of the form

One forms, at é purely formal level, the Laurent series:

L4 ] ' [ ]
5(x) = Z snxn s H(x) = Z anx“ , U(x) =) unxn , to get

- -go -0
S(x) = H(x) U(x) , a relation which is true at the level of formal
Laurent serieé, but not necessarily at the level of function, as we will

show in a moment.

For technical convenience, we will assume that the egcitation
is finitely supported, so that the series for U(x) makes sense as é
function. (In sodewhat greater generali;y, we éould permit the
excitation to be such that U(x) s analytic excepc at zero aund

infinity).

In practical applications, it is often assumed that the filter

transfer H(x) 1s actually a rational function, or has a very "good"
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approximation by a rational function)

discussion. We will make the same absumption.

The filter is called minimut

except possibly for a pole at zero,

In auto-regressive (AR) modblids, or

assumed that H(x) is the reciprocal

stray power of x , which is absorbef

are free to choose time n = 0 independently

We are free to assume, then),

P(x) = akxk + ak_lxk‘l + ees +ax

in the excitation if necessary, we may even agsume

From this point on we assume

above.

9.2

b4

simply notes that P(x) S(x) = U(x)

s = -(alsn41 ta,s

‘and given a (patch of) signal, one dstimates

squares residual error procedure, wh

‘ eduations for unknown coefficients

1

4=

ich: comes

315 32y »

which replaces it in further

phase if all the poles of H(x) ,

re outside the unit circle.

all pole modeling, it is.
of a polynomial, except for a
iﬁto theé excitation, because ve

in excitation and outpute.

where

that H(x) = ’

c
P(x)

1:« By|changing polarity and gain

o
L

= ]

tinat H(x) = - 1

, with as
P(x) P(x)

How does the typical analysis ﬁroéeed from this point? One

g6 that

. 2 + eee aksn_k} + un ’

the a’s by a familiar least

down to solving k linear

beoy ak .




Let’s make this a little .more precise. For cbnvenience in
exposition, we assume.a bilaterally infinite signal-bhtput is given.
(This is the so~-called auto-correlation method). We will assume

- A
additionally that the *>tal signal energy ) sn2 is finite, so the

o

auto-covariance r(p) = f .snsn—p also exists for all p - This is the
: ~—00

same as saying that at the level of formal Laureat series,

R(x) = ] =(p) x® = 5(x) S(1/x) »

-0

We then seek numbers y, y,, consy ¥, 80 as to minimize

o . 2
.nz;w £8n+ (ylsn-l + oee + yksn_k)]

Putting in a dummy variable Y, * held equal to +l, this comes

" to minimizing the quadratic form

) y,y. r(i-3)
oct, 3 <k 13

. which boils down to solving the linear system:

. |
Ll yyr(3e) = ()
f=1 1

j = 1, 2, seey k .

1f we define the polynomial (with variable coefficients) by

k .
Y(x) = Z yvxv s yd = 1 , then our linear system of equations says

v=0 : v
simply that the formal Laurent series Y(x) R(x) has vanishing

coefficients for the first through kP power of x .

42




Note that Y(x)R(x) = Y(x)S(

series L(x)

let us agree that L(x)

coefficients of x, x2, <., xP are

1inear system of equations is simply

Y(x)S{x)S(1/x) = o(xk)', with the bd

There are a few facts worth

(1)

(2)

3)

(4)

(5)

x)S(1/x)
= o(xF)
all zero.

thefrequi

und?ry co

tor 1s the

The residual square erj

in Y(x) Y(1/x) S(x) S{l/x) .
Running the signal backwards is
S(x) by S(1/x), and so|does not
Y(x).

As is known, Y(x) always has all
unit circle. |
Computing S§(x) = ——|U(x) usi

P(x)

"about the origin will

output and excitation

values of the excitati

The signal computed by

if P(x) has all of its

mean the statement to appl

excitations).

[i -éo the

bn.

(4) has f

zeros ouf]

ﬁot;ng here.

, For a given Laurent

, p > 1 , means that the

In this notation, our
rement ¢
ndition Y(o) = Yo ™ l.

constant coefficient

[quivalent to replacing

1ter the equation for

.of its zero outside the’

1
P(x)

ng. power series for

;1v%;a causal relation between

signal depedds on earlier

inite energy if and only

side the unit circle. (We

@y to 411 finitély supported




(6) If the signal.is computed as.in (4) and P(x) has its zefos
outside the unit cifcie, then the solution Y(x) to our
linear system Y¥(x) S(x) S(1/x) = o(xk) will be

Y(x) = P(x) 1if the excitétion consists of a single
pulse, approximately so if the excitation consists of
widely sep&rated approximately equal pulses, but otherwise

will be generally quite different from P(x). o

‘9.3 All of this is éuite familiar, except ppssibly for our
notation. What we have to note that 15, we believe, nmew is that there
are ﬁany'relations'between excitation:and'buﬁput for which -

P(i) S(#) = U(x) ;‘over and abové the one described in (4) of_thé

previous section.

1 ~ has a convergent Laurent
. _ P(x) :
series expansion in the annular region lying between any two consecutive

- .This 1s quite easy to see.

zeros of P(x) . Using such an expansion gives a linear relation
between excitation and output which is definitely non-causal, i.e., the

signal depends'on the remote future of the excitation.

If we take the Laurent expansion beyond the last zero of P(x),
we obtain a "pure" non-causal filter, i.e., the signal depends only on
the future of the excitation. The other Laurent expansions give

dependence of signal both on future and past.
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For a signal 5(x) computeq
above, we always have ‘P(x) S(x) = U
numbef of interesting questions. Foj

following: When we are modeling by }

criterion, how do we know which of the various

| by any o

X) :o Th

|PC using

Femost amo

nevof the Laurent series
is observation raises a
ng these is the

a least square residue

realizations of the

filter we are really getting? Of equal imporjance fg:. Can one conceive

of filters which realistically opera

above’

‘Let’s address the second questions fi

be argumentative, leaving it to the

_argument is. In the formation of thT speech 4

the brain and central nervous system

muscular articulation and glottal ex

in a position to modify the signal onvtﬂe basi

future.
lafge compéred to glbttal pulses. B
system are large scale parallel proc
is not altogether inconceivable that
is carried on. At the same'tihe, fr
received signal processing, it is qu

brain interpretation is reformed out

both forwards»and backwards in time,

te in the

reader to

bitatione.

ht éhe brd
=ssots, wi
sode anti
b qhe poi
lteéplausi

of the r

Whether or not the reader

will shortly see that our willingnes

I

to look

at%abfin]

non—-causal modes described

rsc. Here we will simply‘

decide how cénvincing our
ignal, it is clear that

is well aﬁead in time:of the actual
So the nervous- system is

s of excitation yet in the

Now some will argue that the time scale of neural pulses is

in and central nervous

th lots of feedback, so it:
cipatory signal feforming
at of view of ear-brain
ble that the signal for
ceived signal by looking

temporal resolution.

c&nvinced by these arguments, he

at the non-causal versions




of the filter give~ :. some extra processing power that we did not have
before, without any serious increase in processing cost. Moreover, we

feel that we have better ways of recovering non~minimum-phase filters.

Now let’s have a look at fhe first duestion. We think that the
answer 1s'simp1y that you do not, and you have to keep an oﬁen mind. if
we really had a bilaterally infinite signal, then it is possible to tell
from the annulus of convergence of S(x) something of what is going
on. But, of course, we are never in that situation. |

Before proceeding further, it is useful for us to introduce a
little additional notation. We will cali a finite Laurent series which

goes forwar! no further than the kth power of x ‘and backward no

further than the %P power of ;% a [k,2] polynomial. If the
' 2 ]
coefficients of (%) . (;1(-) y sees (%) and x,xz, ves, <k are all

zero in a Laurent series L(x) , we will write L(x) = o(xlg’ll) .

Now, let’s look at the realization of our filter in which

.
P(x)
will find that s, {s given linearly in terms of

is. expanded in a series beyond the last zero of P(x) . Here, we '

u etc. It is clear that the natural way to model

n’ uml’ un+2, LN Y
this situation is to assume that

)+ uﬁ and minimize

s = -(blsn+1 +bys o e v b S
® ' 2
nz_“ [sn + (b, Sbp T By gt et b 8 4]
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In terms of the notatiomn just introduced,ichis»boils down to solving the

linear system:

R

2(x) s(x) s(1/x) 1 ofx*"*]
where 2(x) is a [o,k] polynomial Tithéconstant coefficient equal to l.

'  ihe reader will reéall from sec; 9,2 the polynomial Y(x)
~which solved Y(x)'s(x)'s(l/x) --O(xk A - id then clear that

Z(x) = Y(1/x) , and that our squaéeé.resfdual error is the same in both
cases. It is important to note, howeper, ;hat 6&? inferred relation
between signai and excitation is no; Fhe.sane-in both cases, since one

is "pure” causal filtering, the other "p@re" ngn-casual filtering.

We still have to determine hpw to model the remaining
realizations of the filter. In these caées, iy seems natural and
plausible to suppose that

8, = (eys,y *+ ¢p 80 b *leas ¥

n- cpsn-p

+d d, s + soe + dq snﬂ) + un »

1 5ne1 T %2 %an2
p +q =k, and to choose the c’s and d'sﬁéo as| to minimize
p|op n+l

. . . ’ . : 2
%(sn+clsn-l+....+c' S '+dls +-oo+dqsn+q)
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This boils down to solving the linear'éystem
W(x) S(x) 5(1/x) = o(x[p’q])',

where W(x) is a [p,q] polynomial with coustant coefficient equal to
1. There is an obvious rélatioﬁ between the solutions for the péir
[p,q] and the pair. [q,p] , which has the following important
consequence. If k is éveh'then the solution ﬁ(x) for the pair
[psP] » P = k/2 has the property W(x) = W(1/x) + Hence, we have only
to solve k/2 linear equations, rather than k linear equations,  which

can be a substantial savings.

It isvclear that 1f we go forward p places and Backwards p
places, we will get.a smaller residual error ﬁhan if we simply went
- forward p places, because we have ﬁore free variables over which to
minimize. Yet in both césgs we héve oniy p linear equations to
solve. .We may lose the advantage confétred by having.a Toeplitz system
to which the méthod.of Levinson applies, but in the covariance method

with finite signal patch, this method does not strictly apply anyhow.
' We also want tb note for future reference that in the case of a

general pair [p,q] , with solution W(x) , the residual square error is

the constant term in the Laurent series for W(x) W(1/x) S(x) S(1/x) .
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9.4 We want to draw some conclus

discussion, for LPC modeling.

Suppose we have a signal and ex¢itatic
S(x) = 1 U(x) » and we‘do not kaopw éﬁich d
P(x) B

realizations of the filter we should &ealin

in advance that all_the zeros of * P(

then probably conventional LPC modelipg is adequate.

‘filter is not minimum phase. For the sake of

that no zero of P(x) lies on the t éirc1e4

1on§, bés#d on our above

ns reiated'by

f the various

with. If it were known

'are outtside the unit circle,

But suppose the
rgument, let us suppose.

Then for ali the

modelings of the filter there is one jand: only Tne for which the signal

has finite energy—-namely the one in Fhich the
-1

- P(x)
realization in which it makes sense 4

convergence of includes the unit c¢ircle;

and the power Spectfum of the signal.
assorted methods for estimating the

of signal, such as windowing, maximun eniropy;
are implicitly assgming that realizat]
power spéctrum exisfs.

(We have not invLstigai

possibly quite important question).
We do not generally know in advince,
filter is minimum phase. This sirongly Lugges

pi

general method of LPC modeling is to o a su
steps.

go forward k steps and backward k

that
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ito-correl

annulat region of

This then, is the only

o talk ab&ut the auto—-correlation

It 1s quite possible that the

ation from a finite patch

or maximum likelihood,

1on of the filter for which the

ted this interesting and

bf course, whether our

ts to us that the best

{table value of k , and

This is to say, we assume




sn = Cl sn-l '+ C2 Sh_z + see + Ck sn_k
+d1 8n+l +d2 sn+2+ oee +dksn+k+un .

and ninimize the residual square error as before. Whether or not we
have an infinite signal, wg may éssume ci = di s, SO we sfiil have
énly k linear équations to gsolve, and_we will cleérly gef a smaller
residual square error than 1f we-had carti;d'dut cqﬁventional ‘k step

LPC analysis.

The fact that we have a sm#llet fesidual gftof suggests that
this ﬁore géneral iodeling éan be.incorpérated into a éonsiderably'
fmproved data cqupressidn systeﬁ. One might, for exanplé,“fiud'the
c’s (hence the d’s ), find the derived e#citatioh, Eranspiiting both,
and reform the signal at the other end b} solving'for sh*k in terms of

the excitation u. and earlier values of the signal.

n

For the purpose of using vur generélized LPC modeling in word

recognition, some method of scoring template against signal is needed.

We believe a simple modification of the Itakura ptbcedure should work

here.

9.5 We will finally make a few remarks about the behavior of
residual square error for gemeral LPC modeling as opposed to
conventional. To this end, suppose we have avpolynonial P(x) ,

P(x) = 1 +ax+ oue + ak'x“ , with all its roots outside the unit
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circle and the signal we are analyz!

1
P(x)

for this signal we tried a general

where

is expanded as a power

find, and what will the residual er;

For the sake of our argume#t, ?et st

idea of what’s going on; we suppose
unit pulse at a=0 » 60 U(x) =1
For our more general model]

W(x) , constant coefficient one, sus

WO S0 S(1/x) = o(xlk]) . Moy pGo) B¢

. 2, .2 2

if [od l+al+a;+ooo+ak

residual square error being the coung
1

we f£ind it to be

> a substantial

conventional LPC modeling.

th that

, thén W(x) =

g 1s given by S(x) = by UCH)
seéies abbut the origin. Suppose
[k,}] Lpf modeling. What will we
:or?be? |

i1l to give us a general

the;exciJation consists of a single

ng,éwe seek a [k,k] polynomial

1/x) S(x) S(1/x) = 1:;'30
L px) B(1/x) . The
tan? term in 'W(x)W(llx)SSx)S(llx),

1mp?ovment over the error of 1 in
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