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Abstract

The Census Bureau asked JASON to consider the use of secure compu-

tation technologies as a way of streamlining the collection and processing of

business data used for economic analyses. Three use cases were considered:

processing of confidential microdata held by Census for statistical purposes

as a way to improve access for other agencies that do not have legal author-

ity to access the microdata; collecting and processing business data as a po-

tential substitute to traditional collection; linkage of records across datasets

stewarded by diverse agencies without ingesting all the relevant data. JA-

SON examined three approaches to secure computation: fully homomor-

phic encryption, secure hardware enclaves and multiparty computation. Of

these three, the technology judged most appropriate for Census Bureau ap-

plications at this time is multiparty computation, but further development is

required in order to fully meet Census Bureau requirements. JASON made

several recommendations regarding future development of multiparty com-

putation approaches. The most important of these is for the Census Bureau

to engage in a series of pilot projects to fully evaluate the potential of mul-

tiparty computation in Census Bureau surveys. While secure computation

technologies can improve the process of integrating diverse datasets to gen-

erate statistical products, some of the access issues are legal and not tech-

nical and so determining the full promise of such technologies will require

further deliberation.
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1 EXECUTIVE SUMMARY

The US government supports a decentralized Federal Statistical System of over

125 federal programs and agencies whose mission is to collect data and publish

statistics for governmental decision making. Prominent examples are the Bureau

of the Census, Bureau of Economic Analysis (BEA), Bureau of Labor Statistics

(BLS), Bureau of Transportation Statistics (DOT) and the Statistical Information

Service of the Internal Revenue Service (IRS). In order to produce their various

statistical products, these agencies often must share data. For example, the BEA

relies on data from the IRS, Census Bureau, and other agencies in order to com-

pute important national economic indicators such as the Gross Domestic Product.

The ability to share and link data among agencies is also critical to producing the

various data products that provide valuable insights into the nation’s economic

and demographic posture and that inform future policies.

Sharing of data among these agencies is, however, also controlled by a va-

riety of legal requirements. For example, Title 13 of the US Code allows the

Census Bureau to collect data for itself and other agencies, but requires that the

various elements of personal or business information collected by the Census Bu-

reau (termed microdata) must be protected. Microdata are protected; they cannot

be shared with other agencies, and can only be used for the purpose of creat-

ing statistics. Title 26 of the US Code protects sensitive Federal Tax Information

(FTI) collected by the IRS. The Census Bureau and BEA require certain IRS data

in order to produce their statistical products and so both agencies have access to

various specific FTI but their levels of access are not the same. A number of for-

mal agreements and procedures are in place between these agencies and the IRS

that control the use of FTI. While such restrictions are important as they protect

privacy, each time the BEA or the Census Bureau wishes to access elements of

FTI to produce a new statistical product, they must engage in negotiations to es-

tablish that the statistics produced do not divulge any sensitive information and
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are consistent with the requirements of Titles 13 and 26. Similar negotiations are

required for any agency needing access to sensitive microdata.

One proposed approach to expediting the sharing of sensitive information

used for statistical purposes is the use of secure computation. Secure computation

describes a variety of techniques developed over the past several decades that

enable computation to be performed on data, while keeping the inputs (and all

sensitive intermediate results of a computation) private. Statistical agencies may

be able to use secure computation technologies to jointly compute business or

demographic statistics that require the linkage of potentially sensitive information

without ever divulging any details of that information.

The application of secure computation may also enable improvements to the

data collection process. For example, the Census Bureau engages in several sur-

veys where businesses provide transactional data, which are essential in economic

health assessments. While some data must be provided by law as part of the

economic census that takes place every five years, the type and frequency of col-

lection of data might be limited by the possible reticence of companies to share

financially sensitive information owing to concerns over loss of competitive ad-

vantage through potential disclosure, as well as the burden inherent in selecting

and preparing data for the survey. Using secure computation technologies, busi-

nesses could send sensitive data such as income statements or even balance sheets

to a statistical agency with the assurance that their data could never be exposed

directly (to the statistical agency or their competitors) and would only be analyzed

or combined with other data for statistical purposes.

The Census Bureau asked JASON to consider the use of secure computation

technologies for processing of business data for economic analyses. Three use

cases were put forth for consideration:
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Use Case 1 Processing confidential microdata held by the Census Bureau for sta-

tistical purposes. Secure computation technologies may enable improved

access for other statistical agencies that do not have the legal authority to

access and process the data.

Use Case 2 Collecting and processing business data as a potential substitute or

supplement to the traditional collection of data by the Census Bureau for

various business surveys. In addition to increasing the trust of business data

providers in the confidentiality of Census Bureau data collection processes

by improving security, an ancillary goal of adopting secure computation

technologies here is to reduce the reporting burden of the respondent to the

survey as well as provide more timely statistics.

Use Case 3 Linking records across data sets stewarded by diverse statistical agen-

cies. Secure computation may allow the Census Bureau (and other statisti-

cal agencies) to link their respective databases and create new data products

by performing statistical calculations on records common to those databases

in a distributed fashion. At present, a series of agreements must be executed

to engage in such linkage and the relevant data must be transported to the

Census Bureau.

The Census Bureau asked JASON to examine two types of secure computation

technologies: algorithmic secure computation, implemented in software using es-

tablished encryption approaches, and techniques that take advantage of secure

enclaves implemented in trusted hardware. The two algorithmic approaches to

be considered are fully homomorphic encryption (FHE) and multi-party computa-

tion (MPC). In FHE, the data are encrypted and mathematical operations are per-

formed directly on the encrypted data with decryption taking place only when the

desired statistical result is obtained. This allows a computation to be outsourced

to an untrusted server that performs the operations on encrypted data without ever

learning about the input, intermediate values, or result of the computation. In
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MPC, data providers (or their agents) participate in a protocol and collaboratively

perform a computation to jointly compute a function on their combined data with-

out any participant learning about the inputs of the other participants. Secure

enclaves are implemented using trusted hardware that is used to isolate the pro-

gram that runs on the sensitive data within the enclave, with encryption also used

to protect the data outside of the enclave.

JASON was asked to provide a technical assessment of the proposed ap-

proaches and their effectiveness as well as to suggest a path for future develop-

ment. JASON was briefed by the Census Bureau on three specific examples of the

use cases under consideration:

Use Case 1 A proposal by the BEA to calculate aggregate wages, employment,

gross economic output and gross domestic product but stratified by the size

of the business contributing to the data. This would require access to FTI

and Census Bureau data that the BEA currently does not have.

Use Case 2 The Commodity Flow Survey (CFS), undertaken jointly by the Cen-

sus Bureau and the DOT to survey the movement of goods in the US and the

various domestic modes of transportation used to deliver those goods. The

CFS is undertaken every five years as part of the Economic Census and only

limited data are shared. The objective here would be to have businesses pro-

vide more granular data with greater frequency, and automatically feed this

data directly to the Census Bureau. Secure computation technologies would

be used to protect sensitive aspects of the data, thus enhancing trust among

the data providers while possibly reducing the burden on respondents by

enabling more automated data collection.

Use Case 3 Distributed record linkage as exemplified by the Census Bureau prod-

uct OnTheMap, a public use data product that connects employment loca-

tions to residence patterns. The data on employment come from state agen-
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cies while the data for residence and business locations come from Census

Bureau demographic data. The challenge would be to perform the linkage

of these datasets in a distributed fashion so that no one agency need ingest

all the databases required to perform the linkage.

At present, the Census Bureau acts as a centralized data collector and aggre-

gator as well as a trusted data curator. For example, the Census Bureau is acting

as a trusted data steward and curator for surveys like the CFS and OnTheMap, and

so is able to collect the information that would be used in the absence of secure

computation to execute the types of statistical computations exemplified by the

above use cases. In examining the potential benefits of the various secure com-

putation technologies, it is necessary to establish that these approaches provide

the intended benefits relative to the approach currently in use by the Census Bu-

reau. It is also important to note that the implementation of secure computation

technologies in and of itself will only partly reduce the need to trust humans and

processes. For example, attention must be paid to the potential for unintended

disclosure of sensitive information in any query to be performed.

JASON examined fully homomorphic encryption (FHE). Such an approach

is, on the surface, a very attractive way to achieve the secure computation goals

mentioned above. FHE allows a computation to be outsourced to a potentially un-

trusted provider, while relying on strong encryption to prevent disclosure of sen-

sitive information. FHE would be deployed in ways that allow multiple providers

to input data into the computation, while limiting the output to one key holder.

While the ability to compute on encrypted data is an impressive step forward, the

techniques for achieving FHE add enormous computational overhead and are not

appropriate for the data volumes associated with the proposed Census Bureau ap-

plications in the foreseeable future. Work continues on making FHE practical, but

several breakthroughs are still required before it can be used for problems of the

size and complexity of the Census Bureau use cases.
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JASON also examined secure multi-party computation (MPC), which is a

well-studied although not fully mature technology with some commercial deploy-

ments and demonstrated uses that match several aspects of the Census Bureau use

cases. MPC can be used in a number of trust models, scenarios describing the

trusted sharing and use of sensitive data, that may be appropriate for the types of

calculations under consideration by the Census Bureau. JASON identified three

such models and developed the following taxonomy for the purpose of this report:

Single Steward MPC In this model a single trusted data steward (e.g., the Cen-

sus Bureau) owns all the data but processes it using at least two servers

using MPC. Such an approach could be used for integration of data with

differing legal restrictions for access as is the case in Use Case 1.

Delegated MPC In this model there are many data providers who use secret-

sharing to split their input between two or more servers, who then use MPC

to compute on that data. Such an approach could be used in Use Case

2 provided one or more trusted entities could be identified to participate

along with the Census Bureau in the data aggregation step. In this model,

no single compute server can reconstruct any sensitive inputs on its own, so

there is only a risk of exposure if the server operators collude.

Joint Data Provider MPC In this model data providers, for example various sta-

tistical agencies, employ their respective information resources and operate

their own servers to participate in a joint MPC computation with the Census

Bureau such as record linkage. Such an approach would be appropriate for

Use Case 3.

An issue of note is that the use of cryptographic protocols plus the over-

head of network operations makes MPC expensive for general purpose computa-

tions. Several applications using MPC and processing data volumes relevant to

the Census Bureau have been successfully demonstrated by using specially tuned
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algorithms and protocols for problems such as private set intersection. There are

additional issues that must be researched further such as the use of MPC for im-

putation of missing data, probabilistic record linkage where matches in data sets

to be joined are inexact, and the infusion of noise into the statistical results so as

to implement methods to prevent inference of data inputs from the outputs such as

differential privacy. In addition, it is important to demonstrate that the output of a

joint MPC computation does not leak sensitive information (e.g. microdata) as a

result of the nature of the query. Thus, the function to be computed by the MPC

protocol must undergo thorough review.

JASON also examined the potential for the use of secure hardware enclaves,

focusing on the Intel SGX implementation, which is the one most widely available

commercially. The design goals of a secure enclave are to provide protection for

running programs on sensitive data even on a compromised host computer. The

security properties for this approach rely on the correctness and tamper resistance

of the hardware implementation; the security and correct implementations of the

protocols used to attest to the validity and state of the enclave, and to transmit

data to it securely; and the proper management of cryptographic keys used in the

attestation. In addition, programs designed to run in an enclave must be carefully

written so as to avoid information leakage due to side channels.

The Intel SGX design has suffered from repeated security issues, making

leakage possible not only of sensitive data but also of cryptographic information

allowing corruption of the attestation process. While SGX enclaves may provide

some measure of protection in a public cloud setting, at the present time they do

not provide the required security guarantees for Census Bureau applications.
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1.1 Findings

The following are general findings:

1. Secure computation technologies are not a substitute for query and disclo-

sure avoidance analysis. It is essential that any functions to be computed

be reviewed for potential disclosure of sensitive information, and that all

implementations be carefully reviewed for potential leaks. Additionally,

secure computation cannot in and of itself be the determining factor in de-

ciding if a query or calculation satisfies a required statutory benefit.

2. Secure computation technologies provide some opportunities for replacing

trust in humans and processes with trust in technical solutions, but can only

partially reduce the need to trust humans and processes. In any potential

deployment, it is important to consider the required security and disclosure

properties, and to understand who or what is responsible for different as-

pects of ensuring them.

Our finding on fully homomorphic encryption is as follows:

3. Fully Homomorphic Encryption (FHE) is unlikely to be of use for any Cen-

sus Bureau application in the foreseeable future. The computational costs

associated with FHE are prohibitive for any Census-scale computation, and,

although there has been rapid progress in reducing computational costs over

the past several years, major breakthroughs would be needed before FHE

becomes practical for the types of applications currently under considera-

tion by the Census Bureau.

The following are our findings on multi-party computation (MPC):

4. MPC is a well-studied although not fully mature technology with tools
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available for building MPC applications, successful deployments, and well -

understood security properties.

5. MPC can be used to compute any function expressible as a circuit securely,

but the costs, dominated by network bandwidth, of general purpose MPC

are high.

6. For some computations, sufficiently efficient MPC solutions are known that

can scale to billions of inputs, including solutions for tabulation and private

set intersection with aggregation.

7. Using MPC securely requires attention to implementation details. It can be

used to eliminate the need to trust other participants in the computation, but

does not absolve one of the need to review the disclosure risks of the func-

tion to be computed, or the need to trust one’s own software and hardware.

8. By design, using MPC means that data inputs are not visible for human

review during the computation. Any data editing procedures must either

be fully automated or performed by the data providers or perhaps a trusted

third party.

9. Imputation of missing data can be performed within MPC in principle, but

further work will be required to determine whether it can be performed for

applications at Census scale.

The following are our findings on use of secure enclaves, in particular, Intel SGX:

10. SGX is designed for a very specific threat model: running code on a host

where the operating system could be compromised. In principle, it enables

running code in the secure enclave without exposing any data under protec-

tion of the enclave to the compromised host.
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11. SGX currently does not provide the promised protection, and has been vul-

nerable to known exploits for its entire history. Recent vulnerabilities not

only allow leakage of data from a single enclave, but enable forged attesta-

tions of the enclave state, completely breaking the security premises of the

SGX ecosystem.

12. If a sound and secure enclave could be implemented that satisfies the goals

of SGX, it could allow for a self-contained program to be audited for desired

disclosure properties, and for external users to verify and validate that this

is the only program that will have access to data deemed sensitive.

13. Adapting a program to run securely within SGX (or other Trusted Exe-

cution Environments) requires specialized expertise, the absence of which

increases the risk that sensitive information is leaked.

14. At present, SGX provides no clear advantage over the trusted data steward

model for the use cases of interest to the Census Bureau.

15. New, potentially more secure designs for hardware enclaves are under de-

velopment, but are not likely to become widely available within a five year

time horizon.

The following are our findings on the use of secure computation technologies for

applications of interest to the Census Bureau:

16. There are potential uses of MPC technologies for two types of Census Bu-

reau applications:

• The Delegated MPC model may provide an improved expectation of

trust when the Census Bureau wants to collect and analyze data from

providers who may be reluctant to participate owing to concerns of

security and confidentiality.
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• For applications where the Census Bureau and other agencies want to

compute jointly on separately-stewarded data, the Joint Data Provider

MPC model may provide a way to satisfy regulatory constraints with

less reliance on inter-agency trust.

17. Three aspects of Census Bureau applications could pose challenges for the

use of MPC technologies:

• First, using MPC means that the data inputs are not visible for human

review. Any data editing procedures must either be fully automated or

performed by the data providers themselves. Any auditing of provided

data or mechanisms to detect misbehaving data providers must also be

fully automated, so algorithms used to aggregate such data must be

resilient to inputs that may be provided maliciously.

• Second, imputation of missing data can be performed within MPC in

principle, but, depending on the specifics of the imputation method

and the size of the data, it may be practically infeasible. Further re-

search is required regarding this issue.

• Third, archiving of secret-shared data is possible, but the protections

afforded by MPC may be incompatible with regulatory archiving re-

quirements. Archiving must either be performed in a way that pre-

serves data privacy, thus requiring agreement among the data providers

when the data are restored, or in a way that combines the data, thus

giving up the privacy properties provided by MPC.

1.2 Recommendations

JASON’s recommendations are as follows:

1. JASON recommends that the Census Bureau undertake with BEA a pilot

study to consider the use of the Single Steward model of MPC in order
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to link confidential microdata. The initial pilot should be done using data

fully accessible to the Census Bureau to gain experience without any cross-

organization complexities. The initial computation should be specifiable

as a simple program (i.e., code fits on one page) that can be effectively

reviewed for potential query disclosure. If successful, a subsequent pilot

should be undertaken in partnership with an external data provider and a

simple joint computation should be performed.

2. JASON recommends that the Census Bureau undertake a pilot study to con-

sider the use of the Delegated MPC model in performing the Commodity

Flow Survey. A key goal of this study should be to investigate whether

such an approach could mitigate privacy concerns for businesses as regards

sharing of confidential business data with the Census Bureau, enhance trust

(in particular whether there are mutually trusted organizations that would

partner with the Census Bureau in the MPC), and whether collecting data

with privacy guarantees would reduce respondent burden by allowing the

respondents to be less selective about the data they provide.

3. JASON recommends that the Census Bureau investigate tests for potential

disclosure of sensitive information by a query so that certain types of queries

can be formally specified with sufficient precision to implement as algo-

rithms without the need for human review. Such automation will streamline

the processing of queries for all MPC models as well the Single Steward

model. Automating query approval would have substantial benefits if pos-

sible, but poses both regulatory and technical challenges that would require

further study.
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2 INTRODUCTION

2.1 Overview of the Study and Charge

The US government supports a decentralized Federal Statistical System of over

125 federal programs and agencies whose mission is to collect data and publish

statistics for governmental decision making. Prominent examples are the Bureau

of the Census, Bureau of Economic Analysis (BEA), Bureau of Labor Statistics

(BLS), Bureau of Transportation Statistics (DOT) and the Statistics of Income Di-

vision of the Internal Revenue Service (IRS). In order to produce their various

statistical products, these agencies often must share data. For example, the BEA

relies on data from the IRS, Census Bureau, and other agencies in order to com-

pute important national economic indicators such as the Gross Domestic Product.

The ability to share and link data among agencies is also critical to producing the

various data products that provide valuable insights into the nation’s economic

and demographic posture and that inform current and future policies. Further,

the ability to link and analyze data from multiple sources can lead to additional

insights into issues of national importance.

An example is the Opportunity Atlas [12], a joint endeavor between the Cen-

sus Bureau and researchers at Harvard and Brown Universities to measure the av-

erage earnings at adulthood of children growing up in any given neighborhood of

the US including also information about their race, gender and parental income.

This information is displayed graphically (as exemplified in Figure 2-1) making

it possible to correlate prospects of upward mobility by where a child grows up.

Several sources of anonymized data are used to produce the atlas:
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Figure 2-1: Illustration from the Opportunity Atlas [12] showing the household

income earned at adulthood by children of low income parents as distributed over

the US.

• The 2000 and 2010 Decennial Census short form,

• Data from federal income tax returns from the years 1989, 1994, 1995 and

1998-2015,

• the 2000 Decennial Census long form and the 2005-2015 American Com-

munity Surveys, and

• geographic information as determined by the location of Census tracts.

The notable aspect of this work is that diverse data sources are effectively linked

across two statistical agencies, in this case, the Census Bureau and IRS, to produce

important demographic information that can then be used in further investigations

or in support of future programs. Chetty has expanded this work in developing

an Economic Tracker [13] to investigate the decline in economic health across the

country as a result of the Covid pandemic.
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Sharing of data, as exemplified above, among various statistical agencies and

the public is, however, also controlled by a variety of legal requirements that are

discussed further below. For example, Title 13 of the US Code [81] allows the

Census Bureau to collect data for itself and other agencies, but requires that the

various elements of personal or business information collected by the Census Bu-

reau (termed microdata) must be protected. Microdata cannot generally be shared

with other agencies, and can only be used for the purpose of creating statistics.

One proposed approach to expediting the sharing of sensitive information

ultimately used for statistical purposes is the use of secure computation. Se-

cure computation describes a variety of techniques developed over the past several

decades that enable computation to be performed on data, while keeping the inputs

(and all sensitive intermediate results) private. Statistical agencies may be able to

use secure computation technologies to jointly compute business or demographic

statistics that require the linkage of potentially sensitive information without ever

divulging any details of that information.

Beyond this is a larger vision of using secure computation as a way to encour-

age respondents to economic surveys (e.g. companies) to the surveys issued by

various statistical agencies to provide more detailed data at a more rapid cadence.

This would make it possible for the Census Bureau to perform economic surveys

more frequently thus making it possible to report on the state of the economy with

more recently acquired data. The use of secure computation would protect pri-

vate inputs but allow the creation of aggregate statistics that do not disclose any

sensitive information.

To investigate these issues further, the Census Bureau asked JASON to ex-

amine the use of secure computation for the purpose of economic data processing.

In their Statement of Work, the Census Bureau provided three use cases for which

the application of secure computation technologies may have benefit:
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Use Case 1 Processing confidential microdata held by the Census Bureau for

statistical purposes. In this scenario, the Census Bureau would submit

confidential data under its control for processing via secure computation

technologies that would then be used by the Census Bureau to aggregate the

microdata into summary statistics. Such an approach could be used to create

data products when contributing agencies do not have the legal authority to

view or manipulate the data directly. The use of MPC would potentially

make it possible to assemble such data products while respecting legal and

privacy restrictions.

Use Case 2 Collecting and processing business data as a potential substitute

or supplement to the traditional collection of data by the Census Bu-

reau for various business surveys. In this scenario businesses would sub-

mit data such as balance sheets and income statements as is done now in

economic censuses and other surveys. In addition, more granular data such

as bills of lading or even general ledger data could be provided and ag-

gregated by the Census Bureau into summary statistics. The use of MPC

would make it possible for businesses to share a broader range of data and

with greater frequency. An additional goal here is to expedite the process

of data collection thus reducing respondent burden when such economic

survey collections are performed.

Use Case 3 Linking records across data sets stewarded by diverse statistical

agencies. The Census Bureau produces a number of data products that rely

on the linkage of records originating from diverse sources. A barrier to

performing such computations more frequently is the need at present to

transfer the relevant databases to the Census Bureau facilities where they

must be fully ingested to perform the required linkage. It would be desirable

to perform the record linkage in a secure distributed fashion so that the

entire databases need not be ingested. The use of MPC in principle allows
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the Census Bureau to perform such record linkage and in the process create

a richer set of data products providing additional insight into the nation’s

economy.

For each of the use cases described above there are several competing sce-

narios for performing the computation. One is the use of algorithmic approaches

to secure multiparty computation (SMC) and here there are two main approaches

to be considered : the first is the use of fully homomorphic encryption (FHE)

wherein computations are performed directly on encrypted data with the final re-

sult available for decryption only by a designated holder of the decryption key.

The second is Multiparty Computation (MPC) wherein multiple agents partici-

pate in a computation in which no party can learn the data inputs (other than

their own) or sensitive intermediate aspects of the computation, but all partici-

pants learn the final result of the computation which can be shared among all the

data providers. The other scenario for performing the computation is the use of

secure hardware enclaves. Such enclaves are implemented in computer hardware

to isolate a computation handling sensitive data from a potentially compromised

operating system. A notable example is Software Guard Extensions (SGX) devel-

oped by the Intel Corporation.

JASON was asked to provide a technical assessment of the proposed ap-

proaches and their effectiveness for the use cases put forth above. JASON was

also asked to suggest a technical path for future developments.

Finally JASON was asked to respond to the following questions from the

Census Bureau:

• Is the Censsus Bureau researching technologies best suited to the purpose?

• What investments might make MPC technology operate at scale for a suite

of business statistics?
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Figure 2-2: Data privacy vs. inference privacy. Data privacy refers to the pro-

tection of input data and sensitive intermediate results as a computation proceeds.

Inference privacy refers to the inability to infer aspects of the data inputs from the

computational output.

• Are there medium-range feasible SMC tools that could be used to enhance

applications using record-level linkage without ingesting the full supple-

mental database?

• Would chaining Intel SGX enclaves in a commercial cloud environment

support complex processing on a scale that meets Census Bureau needs?

• Does Secure Multiparty Computation (SMC) offer an opportunity to reduce

burden on companies while continuing to provide the needed economic

data?

• How does the Census Bureau build trust in SMC so that companies are

willing to participate?

• Are there other conceptual approaches the Census Bureau should investi-

gate?

2.2 Data Privacy vs. Inference Privacy

If one thinks of the operations required to create various statistics from confiden-

tial microdata as a type of computation, then the goal is to produce the statistics
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without revealing any details of the inputs or any intermediate results of the com-

putation that may be sensitive. This is known as data privacy in which sensitive

aspects of the data should not be revealed as the computation proceeds. The tech-

nologies discussed in this report have as their objective data privacy.

In addition to data privacy, one must also consider inference privacy. Even

though a computation is carried out securely, it might still be possible to infer

information about the inputs. A trivial example is having the result of the com-

putation be a simple invertible mapping of the input. A less trivial example is

the release of many different statistics from a database. If more statistics are re-

leased than the number of elements in the data set then there is the possibility that

the database records can be approximately reconstructed. Indeed, a result of Dinur

and Nissim [21] known today as the Database Reconstruction Theorem shows that

there exists a methodology to issue queries on a given database that will allow one

to infer a database whose elements differ from the original in some number of

elements. The number of elements that are not obtained correctly reduces as the

number of queries increases. Thus the methodology asymptotically extracts all

the elements of the private database.

A solution to this problem is to add properly calibrated noise to the statistics

generated by a set of queries. This approach, put forth by Dwork and her col-

leagues [24] is known as Differential Privacy. The Census Bureau plans to apply

Differential Privacy to the public data release of the 2020 Decennial Census and

proposes to use the same methods to protect the output of the economic surveys

under consideration here. We do not comment in this report on the use of Differen-

tial Privacy except to note that in applying it for the purpose of ensuring inference

privacy one must also make use of secure computation in order to prevent leakage

of sensitive microdata as it undergoes the various operations required to enforce

Differential Privacy.
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2.3 Legal Aspects of Data Sharing

Gaining a sense of the statutory requirements the Census Bureau and BEA must

contend with is important in understanding some of the conditions that must be

met with any data collection, sharing, and dissemination process. Such require-

ments are also relevant in considering the application of secure computation tech-

nologies. Federal statistical units and agencies must adhere to various rules that

govern the collection, use, and protection of the data they collect. In the absence

of agency or program-specific statutory guidance, the Confidential Information

Protection and Statistical Efficiency Act (CIPSEA) applies [83]. The Census

Bureau data collection activities, for example, are governed by U.S.C. Title 13

[81] whereas most of BEA’s data collection is governed by U.S.C. Title 22 [82].

CIPSEA applies to both the Census Bureau and BEA with respect to data sharing

authorities. These statutory requirements all lay out some important definitions.

These include (paraphrased from Title 44 U.S.C. [83]):

• “Statistical activities”:

1. the collection, compilation, and analysis of demographic and eco-

nomic data in order to “describ[e] or mak[e] estimates concerning the

whole, or relevant groups” within the economy or society and

2. the development of methods and resources to do so (e.g, models, mea-

surement, frames).

• A “statistical purpose” is the impetus for or result of “statistical activi-

ties” (e.g., the “description, estimation, or analysis of the characteristics of

groups, without identifying the individuals or organizations that comprise

such groups”).
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Not just any statistical purpose will satisfy statutory requirements. For ex-

ample, a Census Bureau statistical purpose must have a U.S.C. Title 13 benefit as

described in DS002 [92]. For example

“The project benefits the Census Bureau by analyzing changing de-

mographic, social, or economic trends that affect Census Bureau pro-

grams, especially those that evaluate or hold promise of improving

the quality of Census Bureau products.”

A statistical purpose for the Statistical Information Service of the IRS also needs

to satisfy a U.S.C. Title 13 benefit . The set of possible benefits for the IRS is

a subset of that available for the Census Bureau, yet they are quite broad. For

example a benefit that satisfies U.S.C. Title 13 use of IRS data is,

“The project benefits the Census Bureau by leading to new or im-

proved methodology to collect or tabulate data.”

Several of the benefits outlined in DS002 [92] speak to improving the quality of

data such as

“The project benefits the Census Bureau by helping to understand or

improve the quality of data the Census Bureau collects or acquires.”

Secure computation is a natural fit for providing a U.S.C. Title 13 benefit as it

offers the opportunity to provide a new methodology (process) for collecting data

that will simultaneously improve the quality.

Another statutory twist exists for the Census Bureau’s and BEA’s access to

Federal Tax Information (FTI). Under U.S.C. Title 26 [80] both of these agencies

have access to these data but at different levels of granularity. For example, the

BEA can only receive FTI on corporations for its statistical uses, whereas the
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Census Bureau can receive FTI from the tax returns of a full range of business

entities and individuals. This results in a restriction on the sharing of FTI between

the Census Bureau and the BEA.

Finally, U.S.C. Title 44 [83] along with an agreement between the Census

Bureau and the National Archives and Records Administration (NARA) [91] calls

for the persistent archiving of the data the Census Bureau collects under U.S.C.

Title 13 [81] and resulting statistical products, including the FTI they use for their

statistical purposes.

To illustrate how this labyrinth of statutory requirements plays out in prac-

tice, we use the Census Bureau’s creation of the synthetic data based on the Survey

of Income and Program Participation (SIPP) [78] as an example.

SIPP is a household-base continuous series of national panel surveys carried

out since 1983 and designed to capture national well-being based on the financial

situation of households and individuals, as well as family dynamics and other

socio-demographic information. Panelists (households) remain in the survey for

approximately four years and new households replace households rotating off the

panel on an ongoing basis. The data include a nationally-representative household

sample that is generated from the Census Bureau’s Master Address File. The SIPP

Synthetic Beta (SSB) is based on the integration of microdata from SIPP panel

surveys with administrative tax and benefit data [79]. The creation of SSB starts

with a “Completed Gold Standard” data file by linking SIPP respondents’ records

directly to Social Security Administration (SSA)/Internal Revenue Service (IRS)

Form W-2 records and SSA records of receipt of retirement and disability benefits.

Once these data are linked, fully synthetic versions of these data are generated to

create the SSB data product.

The Census Bureau is responsible for this data collection. Therefore, the

goals and purpose of the Completed Gold Standard data file needs to align with
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U.S.C. Title 13 benefits [92]. In this case, the benefits are providing more com-

plete data products for relevant populations and enhancing data products as a

result of linking SIPP data to SSA/IRS records. The Census Bureau is able to

augment SIPP data with IRS data through their access granted to Federal Tax In-

formation (FTI) under U.S.C. Title 26 [80]. However, the Census Bureau would

have had to prepare a Predominant Purpose Statement to the IRS Statistics and

Income Division to request the use of the FTI [90]. A U.S.C. Title 44 CIPSEA

memorandum of understanding [83] would be required for use of SSA and such

use would need to be consistent with at least one Title 13 benefit under DS002

[92]. To further create the SSB data product the purpose of the SSB would need

to be consistent with the DS002 Policy on Title 13 Benefits matching benefits for

both the Census Bureau and for the IRS.

Once the data for the Completed Gold Standard are collected and linked,

only individuals granted Special Sworn Status (SSS) can have access to the con-

fidential micro data. Based on the approval the Census Bureau obtained to create

the Completed Gold Standard linked data, any statistical analyses the data can

support would be allowed. But any release of results based on analyses of the

confidential data would need to undergo U.S.C. Title 13 disclosure review [81]

and, once released, would then become a public use data product.

To facilitate broader access to the data, the SSB project aimed to create

high-fidelity synthetic versions of Completed Gold Standard data This was ac-

complished through a complex multiple imputation process [7]. Following data

editing and imputations to fill out the original data in the Completed Gold Stan-

dard, multiple synthetic representations are created for all of the sensitive vari-

ables (as determined by the Census Bureau). The reason for multiple versions is

to facilitate the proper variance estimates for statistics computed using the syn-

thetic data. The synthetic data underwent a disclosure review to ensure U.S.C.

Title 13 [81] confidentiality protection before it was made available.
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Access to the SSB is not publicly available, but it does not require access

to a Research Data Center or SSS. Access is provided through a restricted site –

the Synthetic Data Sever. Users need to request approval from the Census Bureau

to access the Synthetic Data Sever. The applications are reviewed for feasibility

of completing the proposed project based on the SSB synthetic data fields avail-

able. Once approved, the analyses can be completed and publicly released without

disclosure review because the synthetic micro data have already been through dis-

closure review and contain no sensitive microdata.

Researchers can request to have their analyses validated against the under-

lying Complete Gold Standard linked microdata. This can to be done without

granting additional individual SSS to access the Completed Gold Standard data.

Rather, the users submit their analysis codes after demonstrating they have run on

the synthetic data successfully and Census Bureau staff will run the confidential

data. The results will undergo disclosure review and if this is satisfied the results

become public use products.

To complete the statutory picture, under U.S.C. Title 44 [91] the Census

Bureau is responsible for a persistent archive of the Complete Gold Standard data,

all versions of the data included in the Synthetic Data Server, and any Census

Bureau approved public use data products.

The above discussion provides a picture of the statutory complexities faced

by the Census Bureau in using diverse data sources to provide new statistical data

products. In the case of SIPP, the Bureau used the generation of synthetic data as

a way to broaden access. To apply this approach every time one wants to integrate

various data sources is viewed by the Census Bureau as not being scalable. At the

same time, acquiring the requisite special sworn status for all interested parties is

also not scalable. Given this environment it is natural to ask if secure computation

technologies could be used as a way of generating new data products while pro-

viding broader outside access to the finished aggregate statistics. In all likelihood,
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the use of secure computation will not obviate the need to render statutory judg-

ments on various proposals to integrate various data sources but it may provide

guarantees that will make the required deliberations more straightforward.

2.4 Summary of the Study

JASON was introduced to the relevant issues through a set of presentations listed

in Table 2-1. The briefers were experts both internal and external to the Census

Bureau in areas such as economic surveys, business surveys, multiparty compu-

tation, secure enclaves, fully homomorphic encryption, differential privacy and

federated learning. These talks were of high quality and were instrumental in ed-

ucating JASON on these issues. Finally, the Census Bureau provided JASON with

a set of reference materials.

In addition to the speakers provided by the Census Bureau, JASON also en-

gaged Drs. Daniel Genkin and Srini Devadas to brief on various security issues

associated with Intel SGX enclaves as well as proposals for future hardware de-

sign for secure enclaves. JASON also engaged in several telecons with Drs. John

Abowd, Nick Orsini, Cavan Capps and Simson Garfinkel. JASON is grateful to

all those who briefed JASON for their important contributions to this study.

2.5 Overview of Report

In order to provide the context for our findings and recommendations we describe

in Section 3 the three use cases described above in more detail. Our purpose here

is to categorize the type of data that are accessed and the associated aggregate

statistics that are generated while highlighting those aspects of the computations

that must be performed securely. We also provide an assessment of the computa-

tional burden in order to get some feel for the appropriateness of the use of secure

computational technologies. Algorithmic approaches such as FHE and MPC can
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Table 2-1: Briefers for JASON Census Bureau study on secure computation.

add significant overhead to a computation and so it is important to understand

whether the required computations can be performed in a reasonable time.

In Section 4, we assess the various technical approaches to performing the

required computations securely. We begin with an assessment of fully homomor-

phic encryption. We continue with an assessment of secure hardware enclaves

and conclude with an assessment of the use of multiparty computation (MPC).

For each technology we focus on its strengths and weaknesses paying particular

attention to whether a given technology could be appropriate for a given Census

Bureau use case.
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Finally, in Section 5 we conclude with a discussion of how one might map

the various use cases to the MPC technologies discussed and a discussion of the

various trust issues that must be addressed in applying secure computation tech-

nologies. Such technologies can alleviate some of the concerns associated with

the need to compute results securely, but they are not a panacea. We close with

our findings and recommendations and our responses to the questions posed by

the Census Bureau.
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3 CENSUS BUREAU/BEA USE CASES

In this section we summarize the three use cases briefed to JASON. Each use case

represents an archetype of the data collection and patterns of computation. We

begin with a brief overview of the national accounts produced by the BEA. These

statistics provide a comprehensive view of U.S. production, consumption, invest-

ment, exports and imports, and income and saving. They are used to compute

important economic measures such as the Gross Domestic Product. The descrip-

tion of the accounts serves as useful background for the first use case, generating

income statistics by business size. The second use case is the collection of busi-

ness data for the purpose of generating surveys of various aspects of economic

activity; the exemplar here is the Commodity Flow Survey. Finally, the third use

case is the use of record linkage of diverse datasets to generate new data prod-

ucts and insights into economic activity. The exemplar here is the assembly of

the OnTheMap web application providing geographic analysis of where workers

are employed relative to their residences. For each case we provide an overview,

a description of the relevant computations and an estimate of the data volumes

involved. This sets the stage for Section 4 in which we describe various secure

technologies and how they might be used in performing the various data opera-

tions associated with each use case.

3.1 Calculation of GDP and the National Accounts

The National Income and Products Accounts (NIPA) are a series of accounting

ledgers produced by the Bureau of Economic Analysis (BEA) that are used to

assess the status of the national economy. The NIPA consists of seven summary

accounts, with details provided in over three hundred supporting tables. The seven

summary NIPAs constitute the accounting framework for estimating the value of

production, distribution, consumption, and savings for the U.S. economy. Taken
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together, the summary accounts comprise a double-entry system in which an ex-

penditure (debit) in one sector is a receipt (credit) in the same sector or by another

sector. This allows for double-entry bookkeeping, the accounting standard used

in constructing the NIPAs. As an example, the most well-known account is the

Domestic Income and Product account. The debit column of the account sum-

marizes gross domestic product (GDP) measured by the expenditures approach,

which is the sum of goods and services sold to final users. The credit column of

the account summarizes gross domestic income (GDI) measured by the incomes

approach, which is the income earned in production. By design, calculating eco-

nomic activity either as production or as income yields the same answer, and is

the basis for this double-entry account.

The NIPAs are based on source data obtained from a wide range of govern-

ment entities including the Census Bureau, Bureau of Labor Statistics, Treasury

Department, Office of Management and Budget, Agriculture Department, and In-

ternal Revenue Service. Additionally, source data are obtained from a variety of

private sector entities, such as trade associations. Once collected, source data have

to be processed before they can be incorporated into the NIPAs. These calcula-

tions exercise a variety of statistical techniques for estimation including imputa-

tion, interpolation, extrapolation, and regression. Additionally, time series data

often require seasonal adjustments and statistical calculations over moving time

windows.

The NIPA estimates are updated on three time scales; every five years, annu-

ally, and quarterly. The update schedule is defined primarily by the availability of

underlying source data. The comprehensive NIPA update takes places every five

years. It is synchronous with the Census Bureau quinqennial U.S. Economic Cen-

sus, which surveys the entire national economy. Participation of businesses in the

quinqennial economic census is mandatory. Comprehensive updates also provide

the opportunity to make definitional, statistical, and presentational changes that
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improve and modernize the accounts. The comprehensive NIPA estimate, when it

is produced, represents the most accurate and detailed picture of U.S. economic

activity

Annual updates are carried out each summer and are based primarily on sur-

veys drawn from samples of the businesses covered in the quinqennial economic

census. Participation in annual surveys is mandatory for those businesses selected

to participate. Such surveys include the Annual Survey of Manufacturers, the An-

nual Wholesale Trade Survey, the annual Retail Trade Survey, and the Annual

Survey of State and Local Government Finances. While these surveys generally

collect less detailed data than those collected in the quinqennial economic cen-

sus, the annual revised NIPA estimates improve the quality of the picture of U.S.

economic activity by incorporating data from the most recent calendar year.

Quarterly updates are based on quarterly and monthly surveys of businesses,

for whom participation is voluntary. Such surveys include the Monthly Survey of

Manufacturers’ Shipments, Inventories and Orders, the Monthly Wholesale Trade

Survey, and the Monthly Retail Trade and Food Services Survey. These surveys

generally collect even less data than the annual surveys. Because participation is

voluntary, these surveys also generate smaller sample sizes. Increasing partici-

pation rates and expanding the scope of the data in these monthly surveys would

improve the quality of these quarterly NIPA updates, which are widely followed

in the business and economics communities.

Applications based on methods of secure computation are expected to im-

prove the privacy and security of source data that companies provide to the Census

Bureau. It may also be that these applications will eventually reduce the burden

associated with responding to survey data requests. By improving privacy and

security, and reducing the burden of reporting, it may be possible to increase par-

ticipation in the voluntary monthly surveys of businesses. This would greatly

benefit the quarterly NIPA updates.

Secure Computation for Business Data 31 November 23, 2020



3.2 Use Case 1 - Income Statistics by Business Size

As a key example of Use Case 1 JASON was briefed by Erch Strassner and Tina

Highfill of the BEA on a proposal to calculate aggregate wages, employment,

gross output and gross domestic product by enterprise size. The BEA defines an

enterprise as

“a business, service, or membership organization consisting of one or

more establishments under common, direct or indirect, ownership or

control. It is the highest level of establishment aggregation. An enter-

prise may vary in composition, ranging from a single-establishment

company to a complex family of parent and subsidiary companies

(firms under common ownership or control).”

Statistics of income stratified by enterprise size would be of great value to decision

makers as they would indicate in greater detail the various components that go

into computing the Gross National Product and thus provide additional economic

insight.

As indicated in Section 3.1, the BEA makes use of several data sources in

producing its GDP and national income results. The amount and type of data that

are shared is governed by various agreements among the agencies that provide this

data. At present, BEA can develop some insight into the income distribution by

enterprise size as it has access to the Census Bureau Statistics of US Businesses

Survey (SUSB) [77]. From this survey, some aspects of the income distribution

by business size can be inferred, but this approach is complicated by the fact that

certain data are suppressed for privacy reasons. A much better approach would

be to directly obtain IRS income data for sole proprietors, partnerships and cor-

porations from the fields of their submitted tax returns and match the Employer

Identification Number (EIN) or Social Security Number (SSN) on the return to
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Figure 3-1: An example of the record linkage process in which the data for 3

enterprises consisting of 9 establishments and 5 EINs are linked to the Business

Register. Graphic is from [73].

corresponding entries in a database the Census Bureau has developed for its eco-

nomic surveys called the Business Register [75]. The Business Register contains

structural information on various businesses like their size in terms of number

of employees, the number of establishments, organization type (e.g., subsidiary

or parent), industry classification, and operating data (e.g., receipts and employ-

ment). The Business Register is updated quarterly from multiple sources; the

information is protected under both U.S.C. Titles 13 and 26 [81, 80].

In breaking out income data by business size, BEA would require additional

information from the Statistics of Income Office of the IRS. In particular, for

sole proprietors, BEA would require entries in Form 1040 Schedule C [68] for

gross receipts, cost of goods sold, gross profit and gross income; for partnerships

information from IRS Form 1065 [69] is required on receipts, profit income and

salaries; similar data would be required from Form 1120 [70] for corporations.

While such data are available to the Census Bureau through various agreements

with the IRS, those agreements do not allow BEA at present to examine these

entries.
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Figure 3-2: A notional example of aggregation by industry and enterprise size of

wages Once income data from the IRS can be linked with enterprise details from

the Business Register [75] (top), it becomes possible to stratify business income

by enterprise size (bottom). Graphic is from [73].

If this information were available, record linkage would be performed be-

tween the IRS returns and the Business Register to match corresponding EINs or

SSNs. The size of a given establishment could then be determined and the in-

come and other data could then be aggregated. The process is shown graphically

in Figure 3-1. An example of the desired result is shown in Figure 3-2.

This use case illustrates an important issue. Title 26 of the US Code [80]

protects sensitive Federal Tax Information (FTI) collected by the IRS. The Cen-

sus Bureau and BEA require certain IRS data in order to produce their statistical

products and so both agencies have access to various specific FTI but their levels

of access are not the same. A number of formal agreements and procedures are

in place between these agencies and the IRS that control the use of FTI. While
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such restrictions are important as they protect privacy, each time the BEA or the

Census Bureau wishes to access elements of FTI to produce a new statistical prod-

uct, they must engage in negotiations to establish that the statistics produced do

not divulge any sensitive information and are consistent with the requirements of

Titles 13 and 26 [81, 80] and provide the required Title 13 statutory benefits while

not releasing any sensitive information.

Similar negotiations are required for any agency needing access to sensitive

microdata.

A key question is whether such negotiations could be expedited if it could

be guaranteed that all details of the microdata involved in the computation could

be protected using secure multiparty computation. It would still be necessary

to check that the final results of the query also satisfied inference privacy but

this could be achieved by applying the tools of differential privacy as part of the

calculation.

This use case also illustrates a common pattern of computation in which

microdata must be linked and then aggregated. The GDP and other NIPA calcula-

tions discussed in Section 3.1 correspond to a similar pattern in which confidential

microdata from a number of sources are to be aggregated. In many cases, the rele-

vant data reside within the Census Bureau, but any new computation still requires

negotiation and a drafting of agreements among the various data stewards.

The sizes of the data sets in this particular use case are not particularly large

by the standards of what is today termed “big data”. The Census Bureau Business

Register covers roughly 160,000 multi-establishment companies representing 1.8

million affiliated establishments, 5 million single establishment companies, and

nearly 21 million non-employer businesses. As the BEA wishes to look at the es-

tablishments in the Business Register the total number of relevant EINs is about 6

million. The corresponding number of tax return entries is 23 for sole proprietors,
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Figure 3-3: Left: Modes of transportation used in delivery of goods as summa-

rized in the 2017 Commodity Flow Survey. Right: The top commodities shipped

across the United States in billion-tons as summarized in the 2107 Commodity

Flow Survey.

and 17 for partnerships and corporations. As will be discussed in Sections 4.3 and

4.4.1, this is well within the capabilities of secure technologies such as MPC and

also secure hardware enclaves such as SGX.

3.3 Use Case 2 - Processing Business Data Directly

A key example of Use Case 2, the direct processing of business data, is the Com-

modity Flow Survey (CFS) [59]. The CFS is a joint effort of the Department of

Transportation (DOT) Bureau of Transportation Statistics and the Census Bureau.

The survey is the national source of data on commercial freight shipments as bro-

ken out by establishments in mining, manufacturing, wholesale goods, auxiliaries

and selected retail and trade industries. The survey covers all 50 states and the

District of Columbia (DC). It provides data on the type of goods, their origin and

destination, distance shipped, ton-miles, value, weight, and the mode of trans-

portation used for delivery. An overview of the principle modes of transportation

used is shown in Figure 3-3 along with the main products shipped. As can be seen
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from the figure, the primary mode of transportation used to ship commodities is by

truck. It is for this reason the DOT, among other agencies has interest in these re-

sults. By using the tonnage and origin-destination information, processed through

geographic software that provides commonly used highway routings for the com-

modities, the DOT gains knowledge of the level of utilization of various interstate

and intrastate highways, demand for transportation facilities and services, energy

use, safety risk, and environmental concerns. Using this information the DOT

can prioritize future investments of highway funds. In addition, business owners

and researchers use CFS data to identify trends in the movement of goods as well

as spatial patterns of commodity and vehicle flows making it possible to forecast

demands for the movement of goods, and determining needs for associated infras-

tructure and equipment. The CFS also provides important data for determining

domestic supply chains although it does not provide full supply chain origin and

destination data as the survey of shipments is limited to freight transportation in

the US.

The CFS is performed every five years as part of the Economic Census. The

data are collected quarterly during a survey year. At present, the Census Bureau

is responsible for the design of the survey methodology and the data collection.

The sampling frame for the survey is constructed in three steps:

• A set of establishments are selected from the Business Register. The North

American Industry Classification System (NAICS) [89] provides a code for

each business according to the type of activities it engages in. The survey is

stratified by industry type, geography, and business size. Altogether about

100K businesses are selected.

• Each establishment is then assigned a week in a given quarter in which to

report its shipments
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Figure 3-4: Sample from the CFS questionnaire. Graphic is from [50].

• Finally, the shipments to be reported are further limited by asking the estab-

lishment to sample the shipments in a given week. This is done because in

some cases reporting of all shipments is not considered statistically neces-

sary.

The latter step is sometimes considered to be burdensome by the respondents be-

cause it requires them to edit a list that otherwise could be reported directly by

querying the responding shipper’s database system. The geographic sampling is

done over 132 CFS areas consisting of 84 metropolitan areas, 35 remainder-of-

state areas and 13 whole states.

Once the sampling frame is finalized, each respondent receives a question-

naire, a sample of which is shown in Figure 3-4. For each shipment in the sample,

the respondent must provide a number of descriptors including the Standard Clas-

sification of Transported Goods Code (SCTG) [85], the size of the shipment, its

value, the mode of transportation, the destination zip code, etc. The question-
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naires are for the most part filled out electronically, but the format is a spreadsheet

that has the same format as the paper version, creating again some administrative

burden for respondents. In fact, businesses report that it would be much easier to

simply create a flat file with the categorized data for all shipments rather than the

sampled set. The Census Bureau is currently working on providing a method to

simply upload the data from the respondent using a web-based interface.

Because the internal representations of respondents used differ in their re-

spective data handling systems, there are often missing entries and inconsisten-

cies in the data received by the Census Bureau. For example, an SCTG code may

be incorrectly assigned, the mode of transportation for the commodity may not

be sensible, or the destination zip code may be incorrect. Such errors are dealt

with using data editing and imputation. Census Bureau analysts must examine

the errant entry and attempt to correct the errors via editing and missing data

via imputation. In imputation, a “donor” shipment is examined that has similar-

ity with the shipment under inspection and, if the match is sufficiently close, the

missing or incorrect entries will be inferred from those of the donor shipment. Re-

cently, the Census Bureau has investigated the use of machine learning as a way

of correcting errors and inferring missing data with encouraging results. As will

be discussed in Section 4.3, editing and imputation may pose challenges if one

wishes to use any secure computation approaches approaches as direct access to

unencrypted inputs is technically not allowed. Using such technologies may well

require somewhat more elaborate computational approaches to insure consistency

of respondent data.

Once the editing and imputation are completed, the data are weighted appro-

priately to account for the fact that only the data for a particular week in a given

quarter has been collected whereas one is interested in statistical estimates for the

entire year. Additional weighting is required to account for those businesses that

did not respond as well as businesses that may have been created during the time
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period of the survey. Finally an additional “noise” weighting is applied to enforce

inference privacy so that respondents cannot be identified via inference on the

final survey results.

Data users of the CFS are particularly interested in a key product that tab-

ulates estimates of freight flows by origin, destination, commodity, and mode of

transportation. This table has about 5M rows. But because the sampling method-

ology collects only about 6.4M shipments in total, many of the entries in this table

are suppressed because there is insufficient data to estimate some of the entries.

To reduce the number of suppressions, more data would be required.

To investigate how more data could be acquired in future surveys, the Cen-

sus Bureau interviewed various representative shippers to see if they would be

willing to provide more complete data more frequently. Shippers indicated that

they were willing to provide more data, but the process for data collection had to

be streamlined. To address this, the Census Bureau has initiated a pilot program

in which shippers will deliver their data directly to the Census Bureau from their

various business data systems via a new data upload tool. The proposed approach

is shown graphically in Figure 3-5. This has the advantage that respondents need

not expend time and effort on extracting and reformatting the required shipment

data. Interestingly, the companies that were consulted do not have concerns over

IT security. The Census Bureau is viewed as a trusted data steward and there is

perhaps less sensitivity over sharing of shipment data.

The data volumes for the current CFS are again not particularly large. As

discussed above, the Census Bureau currently surveys 100K establishments and

collects about 7M shipping records. However, should the Census Bureau switch

to a data collection mode in which companies provide shipping data say weekly

over an entire fiscal year then the data volumes will become significantly larger,

easily numbering in the billions. Such an approach will also require a different

way of uploading the data to the Census Bureau. For the proposed increased
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Figure 3-5: Left: previous approach to CFS data collection. Right: Proposed

direct approach. Graphic is from [50].

data volumes and the possible use of secure computation technologies, it may

not prove practical to edit or impute the entries. Instead, it may be necessary for

the Census Bureau to work with participating companies and provide automated

possibly web-based tools so that the data are made consistent prior to upload.

This use case illustrates a new paradigm of data collection in which busi-

nesses feed data directly to the Census Bureau on a regular basis making it possi-

ble to analyze more data and report economic statistics in a more timely fashion.

For example, one might envision the communication of other economic data such

as balance sheets, gross receipts, income taxes, etc. for other key surveys includ-

ing those leading to estimates of such important statistics as GDP. In such cases

however, the trust issues will be more acute and there will almost certainly be con-

cerns over sensitivity of the data. If businesses agree to provide this additional data

at a more rapid cadence they will require assurance that their data are processed

securely so that external parties cannot view the data and that the final product will

be only aggregate statistics appropriately protected for inference privacy via the

applications of techniques for disclosure avoidance such as differential privacy. If

such challenges can be overcome significantly deeper insight could be obtained

into the US economy in a more timely way.
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Figure 3-6: The use of OntheMap to display the distribution of jobs associated

with the 92037 zip code (La Jolla, CA). The application also provides distance

information for where people associated with these jobs live. Graphic is from [34].

3.4 Use Case 3 - Distributed Record Linkage

As a key example of Use Case 3, the Census Bureau briefed JASON on the

processing steps required to assemble a public use query tool known as On-

TheMap [76]. OnTheMap is a web-based application that shows where workers

are employed and where they live. It can also be used to provide accompany-

ing information on age, sex, earnings, industry distributions, race, ethnicity and

educational attainment. An example of its use is shown in Figure 3-6 where the

distribution of jobs in the La Jolla, CA area is shown. The application also pro-

vides a distance and direction distribution of where those people who hold the

displayed jobs live.

The data sources for OnTheMap are assembled by a larger program known

as LODES a double acronym standing for LEHD Origin-Destination Employ-

ment Statistics with LEHD standing for Longitudinal Employer Household Dy-
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namics [88]. The LEHD program makes use of existing longitudinal job data

from states and combines this with data from the decennial Census and Ameri-

can Community Surveys. The state data comes from a partnership among almost

all 50 states, DC and Puerto Rico (with the exception of Arkansas, Mississippi,

and Alaska). Under this partnership, states agree to share Unemployment Insur-

ance earnings data with the Census Bureau. The Census Bureau then integrates

this data with the Bureau of Labor Statistics Quarterly Census of Employment

and Wages (QCEW) [84], and then links this personal and residence data from

censuses and other surveys. From these data, it is then possible to generate statis-

tics on employment, earnings, and job flows stratified by location, industry types

and demography. Additional employment records are provided by the Office of

Personal Management (OPM) to facilitate the generation of statistics for Federal

employees. The assemblage of this data requires roughly 60 ongoing agreements

among the Census Bureau and the contributing states and other agencies. These

must be renewed periodically and are viewed as somewhat fragile. For example,

JASON was briefed that OPM has recently decided not to provide job data for

Federal employees associated with law enforcement, presumably for security rea-

sons. This exemplifies the need to secure the input data using SMC and also to

enforce inference privacy by making use of disclosure avoidance methods so as to

protect job and residence information. The Census Bureau has achieved this re-

cently through the use of Differential Privacy (cf. [53]). But further, it exemplifies

the security concerns of linking such diverse data sources.

The core data required for assembly of the final origin-destination relation

are processed quarterly from the following sources:

Unemployment insurance records Records are received quarterly from OPM

and participating states and are used to create the universe of jobs. Informa-

tion gathered includes earnings, job length and continuity;
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Quarterly Census of Employment and Wages This is a survey sponsored by

the BLS that provides the structure of the firms providing the employment

data as well as characteristics associated with these establishments [84];

Business Register The Business Register is a database of establishments provid-

ing information on business location, organization type, business size. The

data are provided by IRS, the Economic Census and other surveys [75];

Person records Records on employees are provided by the Social Security Ad-

ministration, the Decennial Census [87], and the American Community Sur-

vey (ACS) [86]. These are used to create the universe of workers and their

characteristics;

Residential records Records on addresses come from the ACS and Decennial

Census, as well as administrative records from a number of agencies in-

cluding HHS, HUD, IRS and the Postal Service

Geographic records These come from the Census Bureau’s Geography Division

as well as a private geocoding database;

Once these primary data sources are assembled, the Census Bureau creates a

set of secondary input databases that are used in the final assembly of the LODES

database and the OntheMap application. Creation of these databases requires link-

ages among the primary sources. Today this is done at the Census Bureau and re-

quires the ingestion of the entire source input files. The various files required and

the linkages established are shown in Figure 3-7. We list these secondary input

databases and the required linkages below:

Employer characteristics file (ECF) The ECF creates the frame for businesses.

It establishes the relationship between state business firms and establish-

ments as listed in the Business Register. Because states only track state
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Figure 3-7: The data files that must be created for LODES and OnTheMap and

their associated linkages. File abbreviations are defined in the text. Graphic is

from [34].

businesses this is required to complete this relationship for multi-state busi-

nesses. In addition, each enterprise is assigned an enterprise ID. A link

for location information is added by creating a foreign database key to the

Geographic Address List (to be discussed below) and Census Block ID.

Employment history file (EHF) This file provides longitudinal salary informa-

tion by year and quarter for each worker associated with a particular busi-

ness.

Individual Characteristics File (ICF) This file links workers with personal data

by assigning a private identification key (PIK) by linking with Social Se-

curity Information. If this is not possible, probabilistic record linkage is

performed to obtain a best match.
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Geocoded Address List (GAL) This file lists the locations for all establishments

obtained from administrative data. It links via foreign keys to the Census

Bureau Master Address File and geographic information from Census Block

location data.

Residence Candidate File (RCF) This is the frame for residence addresses. Ad-

dresses are collected from administrative data and are tagged with a geo-

code.

Successor-Predecessor File (SPF) This file is used to identify when a business

restructures. When this happens, salary records appear discontinuous. This

file reestablishes the record continuity.

Unit to worker file (U2W) This files establishes the linkage between a job, a

multi-establishment firm and the specific establishment where the employee

actually reports to work. This is necessary because states do not report this

information and it is necessary to obtain correct home-to-work distances.

This is done via multiple imputation.

A final required product is the Quarterly Workforce Indicators (QWI) database

providing local labor market statistics by industry, worker demographics, em-

ployer age and size and are an important source of research data in their own

right. Once the ECF, QWI, ICF, and RCF are properly assembled from the input

databases, the process of assembling the LODES data and ultimately the data for

OnTheMap can be completed.

The data volumes associated with the processes listed above are large. For

example, because LODES/OnTheMap is a longitudinal data product, the typi-

cal employment history file contains 5.5B records. A typical unit to worker file

contains 10B records and the Quarterly Workforce Indicators file contains 2.8B

records.
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The process described above requires considerable coordination but also il-

lustrates the potential of linking diverse data sources to create important informa-

tion products that can provide valuable economic information to decision makers.

A similar example cited earlier in the Introduction is the Opportunity Atlas [12].

In all cases, where linkage of diverse databases was required, various agreements

had to be in place in order to access the data. A natural question is whether secure

multiparty computation could be used so that the various agencies that provide

the relevant datasets could participate in a computation the results of which would

protect the privacy of the inputs as well as make use of disclosure avoidance to

prevent inference of private data from the results of the computation. This will

require secure distributed record linkage. This has been accomplished success-

fully but for the data volumes associated with LODES/OnTheMap state of the art

algorithms are required as discussed further in Section 4.3.

Having examined the three use cases, we next discuss the various options

for secure computation with a focus on the development and application of those

technologies best suited to handle the associated data volumes and computational

patterns.
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4 TECHNOLOGIES FOR SECURE COMPUTATION

Secure computing technologies enable computation to be performed on data with-

out exposing that data. There are two main approaches that can be distinguished

by their trust models: purely cryptographic approaches, in which the only com-

puting device a data owner must trust is their own hardware and software, and

all protections on data exposure are based solely on cryptographic mechanisms;

and approaches using trusted execution environments, in which data owners place

some trust in an externally-owned computing environment.

JASON reviewed the two main types of cryptographic approaches: Fully Ho-

momorphic Encryption (FHE) (Section 4.2), in which an external computing ser-

vice can operate on encrypted data, and Secure Multi-Party Computation (MPC)

(Section 4.3), in which multiple parties execute a cryptographic protocol to coop-

eratively compute a function on their joint data; and the prevailing commercially-

deployed trusted execution environment, Intel’s Software Guard Extensions (Sec-

tion 4.4). Figure 4-1 illustrates the three specific approaches discussed in this

report.

Before getting into the specific technologies, Section 4.1 briefly discusses

the main threat models that are considered in selecting and deploying secure com-

putation technologies. We then discuss Fully Homomorphic Encryption. We then

provide an extended discussion on Multiparty Computation as JASON feels that

MPC technologies offer the best near-term opportunities for application to Census

Bureau/BEA use cases. We then examine Trusted Execution Environments with

a focus on Intel’s SGX. In Section 4.5, we conclude this section with a discussion

of how programs must be adapted to execute as secure computations.
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Figure 4-1: Approaches to Secure Computation

4.1 Threat Models for Secure Computation

A threat model attempts to precisely capture the capabilities and goals of potential

adversaries. All security mechanisms must be considered in light of the potential

threats they are designed to thwart. For secure computation, we have one or more

data owners that want to compute some function on their data. A potential adver-

sary may want to learn sensitive information about that data, or may want to cause

the computation to produce an incorrect output.

The two main threat models for secure computation are semi-honest and fully

malicious security, which we define next. Those are extremal threat models, where

the semi-honest model provides security guarantees only against very weak ad-

versaries, and the fully malicious model provides strong guarantees against nearly

any adversary. The trade-off is that protocols targeting stronger threat models

can be much more expensive than protocols that only provide protections against

weak adversaries. Many alternate threat models have been proposed, which pro-

vide trade-offs between these extremes.

There are a number of other concerns that may apply to secure computation

protocols including availability, that is, the protocol always produces the output,

and fairness, either everyone who should receive the function output does indeed
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receive it, or no one does. We do not consider these further here, although for

some applications these are also important security properties.

Semi-Honest Security A semi-honest adversary, also known as honest but cu-

rious, is a passive adversary who can observe the execution of a protocol, but

cannot alter its execution. That is, a protocol participant that is corrupted by a

semi-honest adversary still follows the protocol as specified, but the adversary at-

tempts to learn as much as possible from the messages they observe during the

protocol execution. Since semi-honest adversaries cannot alter the execution of

the protocol, the only security property they can violate is confidentiality mean-

ing that data, objects and resources are protected from unauthorized viewing and

other access.

The semi-honest threat model makes strong assumptions about what an ad-

versary may do. In particular, the adversary may not alter or inject any messages

in the protocol, or change the actions of a corrupted protocol participant. The

semi-honest adversary model may seem so weak as to be of no value; all the

adversary can do is try to infer sensitive information from a normal protocol ex-

ecution transcript. But in some settings, such as when servers used to execute a

protocol are operated and controlled by large organizations with legal oversight,

it is reasonable to assume adversaries are semi-honest.

Trusted Execution Environments, discussed in Section 4.4, can be used to

establish a semi-honest threat model, where the adversary only observes proper-

ties of the computation that are visible outside a secure computing enclave and

cannot modify the computation done within the enclave. Semi-honest protocols

also often form the basis of protocols that provide stronger security; the first step

to developing a protocol for a stronger threat model is to develop a semi-honest

protocol.
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Malicious Security A fully malicious, also known as an active, adversary is

able to change how the corrupted participant behaves in arbitrary ways. By cor-

rupted participant we mean here that the fully malicious adversary is corrupting

the results seen by the participant. A malicious adversary has all the capabilities

of a semi-honest adversary and can perform the same analyses of the protocol ex-

ecution, but, in addition, they can alter any of the actions taken by the corrupted

participants. Malicious adversaries can manipulate the contents of any messages

in the protocol that are sent to the honest participants, and can alter the computa-

tions it performs however it wants to achieve its adversarial goals.

Since an active adversary can alter the execution, both confidentiality and

correctness requirements must be ensured. For example, a malicious adversary

may be able to alter the function that is computed by a secure computation proto-

col so that the output reveals more information about the other parties’ sensitive

inputs than the intended function would.

There are several methods known for transforming semi-honest protocols

into maliciously secure ones. The two main approaches are requiring all protocol

participants to provide a zero knowledge proof that confirms they have followed

the protocol as expected [31]; the other is to use redundancy with randomly-

selected openings, as in cut-and-choose protocols [11, 72, 100]. Both methods

have high overhead for general-purpose protocols, and providing security against

fully malicious potential adversaries can incur substantially more overhead than

is required for semi-honest threat models.

Covert Security An alternative to malicious security, where a protocol must

prove that the probability that an active adversary could violate the desired secu-

rity guarantees is negligible in some security parameter that controls key sizes,

is covert security [4], where the protocol must ensure that the adversary has a

reasonable probability of getting caught. For many deployments of secure com-
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putation where there are severe legal and financial penalties for an adversary who

is caught behaving dishonestly, covert security provides a good trade-off between

the semi-honest security, with its strong assumptions about limits on adversarial

capability, and fully malicious security, that requires too much overhead for many

applications. An example threat model for covert security is the covert with public

verifiability model [3] which is satisfied if a protocol ensures that if the adversary

cheats it will be detected with some probability (say 1/2), and when cheating is de-

tect an honest party will be able to produce an unforgeable and publicly-verifiable

proof that establishes the cheating without revealing any of the sensitive data of

the honest participants. For many settings, including general-purpose MPC proto-

cols, protocols that provide covert security with public verifiability can be derived

from semi-honest protocols with only a slight increase in execution cost [44].

4.2 Fully Homomorphic Encryption

The goal of Fully Homomorphic Encryption (FHE) [2] is to allow the execution

of arbitrary programs on encrypted (confidential) data, while revealing no infor-

mation about that data during the execution of the program. More formally, given

a secret key s, input m, and function f to compute, a homomorphic encryption

system provides an encryption method, Es, a decryption method, Ds, and a way

to transform f into f ′ such that Ds(f
′(Es(m)) = f(m). The security goals are

achieved if it is possible to compute f ′ with no knowledge of s, and Es(m) pro-

vides no semantic information about the sensitive input m. If the system can

support any finite function as f , it is a fully homomorphic encryption system.

The idea of homomorphic encryption came from a proposal for privacy ho-

momorphisms [65] and an observation that the RSA cryptosystem that depends

on the multiplication of large integers [66] is homomorphic under multiplication

since xeye = (xy)e (mod n). Since then, several other cryptosystems such as the

El Gamal system [25] were shown to be homomorphic under multiplication, with
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other cryptosystems such as the Paillier scheme [61] exhibiting homomorphism

under addition.

For many years, it was debated whether these partially homomorphic cryp-

tosystems could be made fully homomorphic. That is, does there exist a cryp-

tosystem that is homomorphic under both addition and multiplication? If so, then

it would be possible using these operations (which correspond to logical AND

and OR) to compute any finite function over encrypted data1. The first credible

candidate for a fully homomorphic cryptosystem was the lattice-based system by

Gentry [29]. It remains an open question what assumptions are needed to provide

security guarantees for fully homomorphic encryption, and to make such systems

practical.

Using FHE, it would be possible to outsource a computation processing sen-

sitive data to a cloud provider. Even if the remote computer is corrupted in some

way, all data and intermediate results are still protected as only the final result,

which could be publicly shared, would emerge after decryption. The idea is de-

picted in Figure 4-2.

4.2.1 Building homomorphic encryption

The original proposal of Gentry used the theory of lattices to develop a scheme

for FHE. Guided by the work of Micciancio [54], we next provide a summary

of the basic ideas. Lattice cryptography is based on the difficulty of solving the

following problem as indicated in Figure 4-3. Let A denote an m × n matrix of

random integers modulo some prime number q which is of size that is polynomial

in n, the size of a secret key, and let s denote the secret key, a n-dimensional

vector of random integers modulo q. Consider solving the linear system

As = b,

1By finite function we mean here a function expressible as a finite Boolean circuit.
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Figure 4-2: In fully homomorphic encryption a computation is outsourced to a

remote platform and all intermediate manipulations on the data and intermediate

results are performed on the encrypted data. The computation produces an en-

crypted result which is returned to the originator who can decrypt it to produce

the function’s output.

where b is simply the product of the matrix and vector. Given b and A it is simple

to recover s by Gaussian elimination. Suppose, however, we add to the result As

some random noise e which is an m-dimensional vector of integers e sampled

from a random distribution (usually normal) with zero mean and bounded by a

number meant to be small relative to n, say β = O(
√
n), and call this result b. In

this case, one must solve the following system for s

As+ e = b (mod q).

This small modification makes solving the system much harder and is known as

the Learning With Errors (LWE) problem. The best known algorithms for solving

this problem run in exponential time. Interestingly, this problem is also thought to

be hard for a quantum computer, making lattice based cryptography an attractive

alternative if quantum computers become available. This hardness property also

makes the LWE problem an effective one-way function. Given A and b, it is hard

to deduce s and e but given s it is easy to deduce b. Another interesting property is

that the vector b is indistinguishable from a uniform distribution over the integers
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Figure 4-3: Graphical depiction of the encryption process in FHE based on learn-

ing with errors. The encryption takes place by multiplying a random integer ma-

trix of dimension m × n by a secret vector containing randomly chosen integers

of length n. A small error vector is then added to the result to produce the vector

b. This vector is then added to a message to be encrypted acting as a one time

pad. Graphic is from [54].

(mod q). This makes the vector b usable as a type of one time pad if one wants to

encrypt a message m.

Encryption in the scheme looks as follows. Let s be a secret key of dimen-

sion n, let A be the random integer matrix, and let e be the small random noise

discussed above. The encryption of a message m looks as follows

Es(m; [A, e]) ≡ As+ e+m. (mod q)

Note that the ciphertext here is the combination A and the encryption b + m.

This expands the size of the encrypted message considerably leading to questions

regarding the practicality of such a scheme. We address this concern below.

Decryption is accomplished by using the secret key s to compute As and

subtracting it from b+m. This leaves the message but perturbed with noise. Be-

cause the size of the noise is “small” the message is corrupted in its low order bits.

Secure Computation for Business Data 56 November 23, 2020



But this can be filtered out by scaling the perturbed message and then rounding

thus recovering m.

The important properties of this type of lattice based encryption however are

that it can be made homomorphic relative to addition and multiplication of cipher

texts. First it is easy to see that we can add ciphertexts as follows

[A1, A1s+ e1 +m1] + [A2, A2s+ e2 +m2] =

[(A1 + A2), (A1 + A2)s+ (e1 + e2) + (m1 +m2)]; (mod q)

so this scheme is clearly homomorphic relative to addition. Note too, that under

each addition, the noise also adds up. The same is true if you multiply the cipher-

text by a constant. If the constant is too large it can increase the noise to the point

where the message can no longer be decrypted reliably.

Less obvious is that this scheme is what cryptographers call circularly secure.

It is easy to compute encryptions of linear functions of the secret key without

revealing the secret key. The decryption algorithm is linear in the ciphertext but

it is also linear in the secret key. For example, you can show that if s′ = (−s, 1)

then

Ds′(Ab) = m+ e, (mod q)

and

Dcs′(Ab) = cm+ ce, (mod q)

where c is some small multiplicative constant.

Multiplication by a constant of arbitrary size is achieved by defining a more

elaborate encryption function

E ′[m] ≡ (E[m], E[2m], E[4m], . . . , E[2log qm]). (mod q)

This construction can be used to show that

cE ′[m] = E ′[cm]. (mod q)
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Finally, the following encryption function

E ′′(c) ≡ E ′(cs′) where s′ = (s,−1) (mod q)

can be shown to have all the desired properties one wants:

E ′′(m1) + E ′′(m2) = E ′′(m1 +m2), (mod q)

E ′′(m1)E
′′(m2) = E ′′(m1m2). (mod q)

This construction is not quite fully homomorphic. The encryption function

E ′′ can evaluate any arithmetic circuit, but with each operation the noise will grow

and so in this form the scheme can only evaluate small circuits. The following idea

can be used to clean the noise. Let

d = Es(m× (q/2) + e),

and let

fs(d) = msb(Ds(d))× (q/2) = m× (q/2),

where msb means extracting the most significant bits. This operation effectively

cleans the noise, but it can’t be used as is because it requires decrypting the mes-

sage. Gentry’s [29] brilliant observation was that this cleaning operation could

also be performed homomorphically. It turns out that the function fs evaluated

on an encryption of the key s leads to the same result as returned by the decryp-

tion but encrypted under the key s. Thus the output noise will depend on the

operations required to decrypt and extract the most significant bits, but not on the

accumulated noise e. This idea is known as bootstrapping and makes it possible

to evaluate circuits of any depth or essentially any function that can be computed

from circuits. Note that this makes use of an assumption that the encryption func-

tion E ′′ is circularly secure. It has been shown that E and E ′ are circularly secure,

but it has not been shown yet that E ′′ has this property although it is believed that

it is a matter of time before this is verified.
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4.2.2 Ring learning with errors

As discussed above, the FHE schemes based on the LWE problem require large

key sizes. This is simply because one has to provide the vectors for the random

matrix A as well as the secret key s. It would be desirable both for reasons of

memory and computational efficiency to reduce the key size to something linear

in the size of the message. One way to do this is to assume there is structure in

the columns of A [63]. One chooses the first column of A

a1 = (a1, a2, . . . , am)
T

uniformly but the remaining vectors are chosen according to the rule

ai = (ai, . . . , am,−a1, . . . ,−ai−1)
T i = 2, . . . , n

Now there are only O(m) elements. In addition because the matrix now has a

circulant form, it is possible to significantly speed up the matrix-vector multiply

using the fast Fourier transform. Mathematically, this construction replaces the

group of integers Z
m
q with a polynomial ring Zq[X]/ < Xm + 1 >. Because

these constructions use a ring, the problem is called Ring Learning With Errors

(RLWE). It turns out these types of problems are also hard and RLWE is a promis-

ing candidate for efficient implementations of FHE

At present, the fastest implementation of FHE is the TFHE library [14].

TFHE is an open source C/C++ library available via github. With security param-

eters equivalent to 128 bits of security, TFHE can evaluate about 70 bootstrapped

binary gates in one second on one core of an Intel Core i7 or i9 processor. This

is, of course, quite slow relative to ordinary cleartext computation. Typically, bil-

lions of gates must be evaluated for statistical calculations and so there would be

considerable latency in using FHE to the extent that the use of FHE today is not

practical for Census Bureau applications.
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It is difficult to say how well FHE will perform in the future [57] since it

has been subject to constant improvement. This improvement has taken orders

of magnitude off the time required for computations, but the fundamental issues

remain. Part of the issue, apart from the number of terms to be evaluated, is the

size of the integers used in the arithmetic. Most modern CPUs have 64-bits as a

native type, and a few support 128-bits, far short of what it needed to effect FHE

operations in hardware. DARPA has initiated a project called DPRIVE (Data

Protection in Virtual Environments) [20] that aims to make FHE practical through

hardware acceleration.

4.2.3 FHE is promising but further progress is required

To summarize, there are two primary concerns regarding the adoption of FHE.

The first more minor concern is that it remains to be proven that the fully homo-

morphic operation E ′′ is circularly secure. It is believed that it is, but proving this

is apparently much more difficult than proving the circular security of the simpler

operations like E and E ′. The second concern, and most widely discussed, is per-

formance. Although there has been great progress in improving the performance

of FHE since it was first described by Gentry [29], homomorphic operations re-

main extremely slow relative to arithmetic as performed in the clear on modern

processors such that it is impractical today to apply FHE for all but the simplest

programs. Work continues in this area and it is important for the Census Bureau to

continue to track progress as an implementation of FHE that can handle arbitrary

programs and large datasets at reasonable speed would be a very important step

forward in secure computing.
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4.3 Secure Multi-Party Computation (MPC)

Multi-party computation (MPC) enables two or more participants to perform a

protocol that computes a function on their combined data, without revealing each

individual’s input to the other participants or leaking any information from inter-

mediate results [26]. At the end of the protocol, the output of the function can be

revealed to one or more participants in the protocol. The key difference between

FHE and MPC is that while FHE allows a computation to be fully outsourced to

an untrusted computing service, MPC requires active participation of data owners

in a protocol that performs the computation. Participants in an MPC protocol must

agree on the function to compute together, and each participant maintains control

over their own input to that computation.

The original pioneering work on MPC goes back to Andrew Yao in the

1980’s who formulated the first protocols. At that time this work was viewed

as mostly of theoretical interest. Today, MPC is viewed as a well-studied but not

fully mature technology. Over the past two decades, with the advent of faster

computers and networks, it has been transformed from a theoretical curiosity to,

in some applications, a practical tool, with industrial deployments and tools avail-

able for producing MPC protocols. General purpose MPC is still expensive for

large computations and is still maturing, but special purpose protocols have been

developed that provide efficient solutions to many tasks relevant to data aggrega-

tion and statistics. Next, we provide a high-level introduction to MPC protocols.

Section 4.3.2 discusses different ways of using MPC. In Section 4.3.3, we survey

some applications of MPC.

4.3.1 MPC protocols

At a high level, all MPC protocols can be viewed as a form of secret sharing.

In some protocols, data is explicitly secret shared, such as XOR secret sharing

Secure Computation for Business Data 61 November 23, 2020



Figure 4-4: Example MPC protocol that uses additive secret sharing to jointly

compute a sum.

in which a value x is split into two shares, xR and a random mask R, which is

randomly generated, with xR = x ⊕ R. Then, neither R nor xR reveal anything

about the semantic value of x, but the two shares can be combined to reconstruct

x = R ⊕ xR. Another example is additive secret sharing, such as the protocol

illustrated in Figure 4-4.

The other kind of secret sharing used in MPC protocols is where one partic-

ipant holds encrypted data, c = Enck(x) and the other party holds the decryption

key k. Like the XOR secret sharing, this has the property that if the encryption

algorithm is secure, neither party by itself has meaningful information about x,

but by combining their shares they can learn x. This type of secret-sharing pro-

tocol provides a simple way to do addition securely on shares and combine the

results to produced the sum, but does not support other operations. There are sev-

eral methods to extend this type of additive secret sharing approach to support

multiplication (and hence, complete operations), but supporting both operations

requires additional communication for each circuit layer. Examples of protocols

of this type include Goldreich-Micali-Wigderson (GMW) [31, 30], and the Ben-

Or, Goldwasser, and Wigderson [6] that builds upon Shamir secret sharing [71].
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These costs can be moved to a pre-processing stage by using correlated random-

ness. For example, the communication needed to perform multiplications in the

BGW protocol can be mostly moved into a preprocessing stage by using Beaver

triples [5].

To provide an understanding of how general-purpose MPC protocols work,

we describe one such protocol in a bit more detail. Yao’s Garbled Circuits protocol

(GC) is the most widely known MPC technique, and for general-purpose MPC,

it is often the best performing option. Yao’s protocol has low latency since the

number of communication rounds does not scale with the size of the circuit, unlike

protocols like GMW where a communication round is needed for each layer of the

circuit.

The intuition behind Yao’s protocol, illustrated in Figure 4-5, is that any finite

function can be encoded as a circuit of simple Boolean operations (e.g., AND, OR,

NOT), and those operations can be implemented as lookup tables. If the lookup

tables can be evaluated obliviously, then the function can be computed obliviously.

In Yao’s protocol, one party, known as the circuit generator, generates a garbled

circuit that computes the desired function, and the other participant, the circuit

evaluator, evaluates the circuit obliviously. By oblivious computation we mean

here that the circuit generator generates all the encryption keys used to produce

the circuit, but learns nothing from its evaluation and the evaluator can evaluate

the circuit, but because of the gate garbling, learns nothing about the inputs or

intermediate results.

The encrypted lookup tables, known as garbled tables, consist of the en-

crypted entries that correspond to the output values of a given logic gate in ran-

domly permuted order. Each virtual wire in the circuit is assigned two keys by the

circuit generator, known as their wire labels, each one to represent each semantic

value the wire could hold. The mapping is not known to the evaluator, and the

evaluator only knows the wire labels that it learns by decrypting the row corre-

Secure Computation for Business Data 63 November 23, 2020



AND

Figure 4-5: Yao’s Garbled Circuits Protocol

sponding to the input wire labels it has for each gate during the computation. So,

for a given wire wi, the evaluator can only ever learn either w0
i (representing 0) or

w1
i (representing 1).

Each entry in the garbled table is the wire label representing the correspond-

ing output value, encrypted with the wire labels of the inputs. The key property

this has is that the evaluator is only able to evaluate one row of that table, ob-

taining a wire label that represents its output. Since the evaluator cannot decrypt

the other rows in the garbled table, it cannot determine if this output represents 0
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(for example, if the gate is an AND and this wire label matches the value in two

other rows) or 1 (for an AND gate, the value of a single output row). To enable

the evaluator to know which entry to use, one of the wire label bits is used as a

“point-and-permute” bit. At the end of the protocol, the final output can be de-

coded (this could be done either by sending it back to the circuit generator, who

knows the keys and can learn the semantic value of the output wire labels), or by

adding a decoding step that would allow the circuit evaluator to learn the output.

It remains for the evaluator to obtain the wire labels corresponding to the sen-

sitive input. The generator’s input wire labels can just be transmitted directly —

the evaluator does not know their semantic value. For the evaluator’s input wire

labels, the evaluator must obtain the wire labels wbi
i , where bi is the (semantic)

value of the i-th bit of the evaluator’s input, without revealing the bi values to the

generator or learning the complement wire labels, w1−bi
i . This requires asymmet-

ric cryptography, and is accomplished through an oblivious transfer (OT) proto-

col. OT-extension protocols have been devised that enable very efficient oblivious

transfer for a large number of input bits, using only a number of asymmetric op-

erations that scale with the security parameter and the number of hashes required

only scales with the input size) [40].

Although the garbled circuits protocol seems expensive because of the en-

cryption operation needed for each gate evaluation, protocols based on Yao’s

construction can be surprisingly efficient. Many improvements have been made

to the efficiency of garbled circuits protocols [26], and tools have been devel-

oped to enable programs written in high-level language to be automatically com-

piled into garbled circuit executions. Symmetric encryption is remarkably effi-

cient with the built-in AES instructions provided by modern processors, and a

series of optimizations to the basic protocol have substantially reduced the num-

ber of encryptions and ciphertexts needed including the free-XOR technique [45],

which enables XOR operations to be performed without any encryption or cipher-
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texts; half gates garbling [98], which reduces the number of ciphertexts needed

for an AND gate to two, and hybrid techniques which incorporate oblivious ran-

dom access memory [32] into MPC protocols to provide sublinear memory access

costs [60, 33, 23].

4.3.2 Trust models for MPC

As discussed in Section 4.1, MPC protocols can be designed for a variety of threat

models that capture assumptions about adversary capabilities and goals. In addi-

tion, MPC protocols can be deployed with a variety of trust models that reflect

assumptions about the data owners in an MPC and whom they trust. The crypto-

graphic protections provided by MPC allow each data owner to maintain control

over their own data and only rely on their own hardware and software to correctly

implement the MPC protocol. In many deployments, however, it is not practical

for all data owners to be involved in performing the computation. In other settings,

MPC can be used to improve security even when there is only one data owner. To

clarify these settings and ways of using MPC, JASON identified three different

trust models for MPC deployments; they are described below. Although there

are no established names for these models in the literature, each of the models is

widely used. Section 4.3.3 includes example applications of each of these models.

Single Steward MPC In the Single Steward model, MPC is used to provide ad-

ditional security for a setting where a single data owner already has all the data

required to perform the computation. This model is useful for mitigating insider

attacks, limiting the risks of exposure through accidental error or malicious com-

promise, and increasing confidence in auditing mechanisms. The data are split

using a secret-sharing method into two or more shares, each of which are sent to a

different server. The servers then jointly perform an MPC to compute the desired

function on the data. This setting does not provide enhanced privacy since the
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Figure 4-6: Trust model for Single Steward MPC

original data owner, responsible for stewarding the data and managing the pro-

cess, already has access to all of the data, but, it can still be useful for mitigating

the risks of vulnerabilities being exploited by external adversaries. For example,

in the setting shown in Figure 4-6, if an adversary can compromise Server A, but

not Server B, this protects the data from disclosure. This type of MPC can also be

used for deterring insider attacks if the two servers are isolated organizationally,

for example, if the systems are administered in a way that no system administrator

has access to both servers, so different individuals are responsible for each server.

It can also be useful for satisfying legal requirements, such as providing an audit

trail, that could be enforced in this model since any function run on the data would

require approval by two managers, one responsible for each server.

As depicted, the data is split into two shares and computation is performed

using a two-party MPC protocol. Data could be split into more shares, and in

cases where three servers are used, there are very efficient MPC protocols for

three-party honest-majority settings. In an honest-majority protocol, instead of

providing security guarantees when any number of parties are dishonest, the pro-

tocol only provides security guarantees when the majority of participants behave
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Figure 4-7: Trust model for delegated MPC. In this example, the data providers

delegate trust to two server operators, who each obtain a share of the data. The

server operators are trusted to not collude, but neither operator by itself can learn

the input data. Together, the two servers execute an MPC computation to compute

a function on the secret-shared data.

honestly. For a three-party protocol, this means that at most one of the servers

is compromised. For many settings, this is a reasonable assumption, and the ef-

ficiency advantages of three-party honest-majority protocols outweighs the addi-

tional security assumption and the costs of operating a third server.

Delegated MPC In the Delegated model, depicted in Figure 4-7, a computa-

tion involving sensitive data from many data providers is done without requiring

the providers to participate directly in the MPC protocol execution. The data

providers still obtain most of the protections offered by MPC, but instead of only

trusting their own software and hardware that participate in the protocol, they split

their data among two or more delegated MPC servers. Those servers then perform

the computation on the secret-shared data using an MPC protocol, and obtain the

output of the function. The data providers need to trust the operators of the del-

egated servers to not collude. If the server operators do collude, they can just

combine the secret shares directly and learn the data providers’ sensitive input.
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If the delegated server operators can be trusted not to collude, however, then the

protocol provides protection against any one of the server operators being ma-

licious. Since the delegate servers are only receiving secret shares, which have

no semantic value in and of themselves, and then participating in an MPC proto-

col to perform the computation, they do not learn anything about the other secret

shares during the protocol execution. They do, however, learn the output of the

function, so it is essential that the data providers trust that the delegated servers

will only compute appropriate functions on the provided data. Since both parties

in the MPC must agree on the function to be computed, this assurance relies on

the same no-collusion requirement as the rest of the data protection. For a data

provider to trust a delegated MPC with its secret-shared data, it must be convinced

that at least one of the server operators will behave honestly.

As with Single Steward MPC, Delegated MPC can be done with more than

two parties, and the most efficient solutions are often in the three-party, honest-

majority setting. Note here, however, that the honest-majority setting means that

now a data provider must be confident that the majority of the server operators

are honest. In a three-party honest-majority delegated MPC, if any two of the

delegates collude, all security is compromised; the data providers rely on at least

two of the three server operators being uncorrupted.

Joint Data Provider MPC The Joint Data Provider model, depicted in Fig-

ure 4-8, is the traditional setting for MPC, in which two or more mutually distrust-

ing parties jointly perform a computation on their combined data. In this setting, a

participant only needs to trust that the protocol satisfies the desired security prop-

erties (which can be proven mathematically for many MPC protocols), and that

their own computing infrastructure implements the protocol correctly and does

not otherwise expose their data. This is the cleanest model for academic analysis

of protocols, since a data owner who participates in a Joint Data Provider MPC
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Figure 4-8: Joint Data Provider MPC. Each data owner operates its on server, and

only has to trust the server it operates and the MPC protocol.

protocol does not need to trust anything outside of their own control other than the

mathematics used to establish the protocol security proof. In practice, however,

trusting one’s own computing infrastructure is difficult, and nearly always ends

up requiring trust in third parties who provide protocol implementations, not to

mention, the operating system and processor that executes those implementations.

Hence, even in this setting where a provably secure protocol is used, data stewards

need to consider the risks stemming from their own computing infrastructure.

4.3.3 Applications of MPC

In this section, we survey some applications of MPC to give an idea of what is

feasible today, and aspects that need to be considered in deploying MPC applica-

tions. Table 4-2 provides a summary. These examples provide an understanding

of the types of applications that can be built using known MPC techniques often

in combination with other techniques, how well they scale, and the threat models

that can be achieved.
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Table 4-2: Summary of Representative MPC Applications. The first four applica-

tions are in the passive (semi-honest) threat model; the bottom two provide active

(fully malicious) security.

Application Computation Model Cost/Scale

Boston Workforce

Study [49]
sum Delegated 2PC ∼70 employers

Education/Income

Study [9]

aggregate statistics with

join
Delegated 3PC

10M tax linked with

0.6M education records

Email Spam

Filtering [35]
Naı̈ve Bayes classifier Joint Data 2PC 5× standard cost

Private Set

Intersection [62]
private set intersection Joint Data 2PC 1M items in 4 seconds

Advertising

Measurement [46]
private join and sum Joint Data 2PC

Google user data with

advertisers’ sales data

Key Splitting [27] authentication, TLS Steward 3PC 1B gates/second

Boston Women’s Workforce Study In 2013, Boston mayor Thomas Menino

pledged to make Boston a destination of choice for working women. The Boston

Women’s Workforce Council (BWWC) was established to fulfill this aim. One

goal of this group was to understand the root causes of the existing wage gap

between men and women engaged in similar occupations. To study this, and also

to measure ongoing progress in reducing that gap, the BWWC partnered with

researchers at Boston University (BU) to develop a secure method for collecting

and analyzing salary data. Such information is sensitive for the companies asked

to provide it, since they do not want their salary structure exposed. However,

gross statistics computed over the population of participating companies in Boston

would not be sensitive provided many companies participated in contributing to

the survey.

To achieve a privacy-preserving solution, computer scientists at BU devel-

oped an MPC solution [47, 49], illustrated in Figure 4-9, and provided a web-

based interface for companies to provide their data. A key aspect of their solution

is that it only requires a single server operator, in this case the Hariri Institute at

Boston University, but performs the computation and generates results in a way
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Figure 4-9: MPC protocol used for the BWWC study. Graphic is from [48]

that only a trusted party (in this case the BWWC) can obtain the results. This is

done by masking all values with randomly generated keys, where the mask values

are encrypted using the public key for the BWWC.

The computation proceeds in four steps:

1. A participant in the study uses a web-based interface to submit the relevant

salary data in the form of a spreadsheet as shown in Figure 4-10. The rows

of the spreadsheet are labeled according to job description (e.g., executive,

technician, etc.). The columns are labeled by ethnicity and also broken

out by gender. The web server is located at BU, so skeptical participants

would need to audit the scripts provided in the web page before entering

any sensitive data into it.

2. Scripts on the web form mask the provided salary numbers by adding a

random mask to each entry, and then submit the masked values to a database

server also at BU.
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Figure 4-10: An example of the web-based interface used in the BWWC survey.

Note that the web-based interface attempts to enforce some data input constraints

to prevent erroneous entries. Graphic is from [48].

3. The random mask for each entry is encrypted using a public key provided

by the BWWC and sent to a server at BU. These random masks can only be

decrypted by the trusted party (in this case the BWWC).

4. The BU server computes the sum of the masked data values, and sends this

masked aggregate sum to the BWWC along with the unmodified encrypted

masks. The BWWC uses its private key to decrypt the masks and subtracts

this from the masked aggregate sum to obtain the result.

This process can be performed on various different data elements to obtain sums

broken out by gender, ethnicity and job description.
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Note that throughout this process, no party learns any sensitive individual

salary data. The approach here works because of additive secret sharing. The

masks are a type of additively homomorphic encryption system, so the masked

sum can be computed on the masked data, and then produces the correct output

when the masks are removed. Note also that the BU server can change the aggre-

gate sum arbitrarily (by adding or subtracting any value to the masked aggregate

sum), however, so this only provides semi-honest security.

An important feature of the BWWC survey was the development of the web-

based interface. It was considered essential for usability that data could be pro-

vided using a simple web form. Since there is no opportunity for data cleaning

with the masked values, the web interface was designed to perform consistency

and sanity checks locally. For example, checks on plausible salary levels were

done by the web form to attempt to prevent errant or nonsensical entries in the

spreadsheet.

Estonian Education/Income Study In 2015, statisticians in Estonia wanted to

understand the impact of education on income, and, in particular, to see if there

was a correlation between students working during their studies and graduation

rates. The inputs needed for the study involved income data held by the Estonian

Tax and Customs Board, and education data held by the Ministry of Education and

Research. To comply with Estonian data protection regulations, the two data sets

could not be combined or released. To enable the study an MPC was implemented

that allowed computation of joint statistics on the data sets without exposing the

data inputs [9].

The MPC was performed using a three-party honest-majority MPC software

framework, Sharemind [8] and used the Delegated MPC model. The three servers

were operated by Cybernetica (the commercial developer of the Sharemind frame-

work), the Estonian Information System’s Authority, and the Ministry of Finance.

Secure Computation for Business Data 74 November 23, 2020



Hence, instead of relying on their own computing infrastructure as would have

been possible in a two-party Joint Data Provider model involving the data hold-

ers, the data holders trusted the three organizations running delegate MPC servers

to not collude and to carry out the protocol as specified. The data were protected

using secret sharing across the three servers operated by the two government agen-

cies and Cybernetica. Note that all were running software provided by Cybernet-

ica, so security depends on the agencies auditing and trusting that software.

By using the honest-majority three-party model, the computation could scale

to the size required, with over 10 million tax records joined with over 600,000 ed-

ucation records. The total execution time for the protocol was 384 hours, which

was dominated by the time to aggregate the tax data and compile the analysis table

within the MPC. This work was performed in 2015; improvements to protocols

and computing power since then make it plausible to infer that a similar compu-

tation could be done today, using the same approach, in about 5 hours of compute

time.

Private Set Intersection Many interesting data analyses can be viewed as com-

puting an intersection of two or more data sources, and either revealing the result

of the intersection or computing some simple aggregate statistics on the set inter-

section. When the two data sets that are input are kept confidential, this is known

as private set intersection (PSI). PSI is required for example when one wishes to

perform exact record linkage on diverse data sets. Although private set intersec-

tion has been implemented using general-purpose MPC [38], very efficient custom

protocols have been developed for PSI that take advantage of the fact that its main

operation is an oblivious equality test. An example of a recent PSI protocol from

Pinkas et al. [62] uses an oblivious Bloom filter construction 2. Both the com-

munication and computation costs scale linearly in the size of the input, and the

2A Bloom filter is a data structure designed to determine in a rapid and memory-efficient way,

whether an element is present in a set.
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protocol can perform a PSI on sets with one million items with fully-malicious

security in the Joint Data Provider MPC model in 4 seconds on commodity pro-

cessors. Experiments have not been done on larger sets, but it seems reasonable

to expect intersections of billion-item sets could be computed within a few hours.

An example deployed application using private set intersection has been demon-

strated by Google and its advertisers to allow measurement of the effectiveness

of advertising on purchases [46, 39]. This involves computing the private set in-

tersection between advertising click data owned by Google, linked with identities

from transaction data owned by the advertisers, to count the number of purchases

correlated with advertising. This work also employed a highly tuned algorithm to

compute the PSI.

Key Management The single data steward MPC model is useful when a single

organization holds all the data for the computation, but wants to protect it from

vulnerability to a single compromise which could be either an external attack on

a server, or an insider attack. An industrial example is the “virtual Hardware

Security Module” (vHSM) application from Unbound Tech [74]. This used a

three-party MPC to allow an organization to split its secret keys across three hosts,

while enabling operations such as signing that require the use of those keys to be

performed as an MPC protocol. Such a model can provide high performance using

optimizations that take advantage of specific properties of the application, as well

as the three-party MPC setting, executing over 1B gates per second even under an

active security model. This performance is sufficient to implement cryptographic

operations with reasonable latency,e.g., performing RSA key generation in around

30 seconds) [27].

Other applications Academic researchers have demonstrated MPC as used in

numerous applications including detecting satellite collisions [37], implementing

the national medical residency stable matching algorithm [22], financial risk anal-
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ysis [1], and genomic analyses [15, 96]. Here, we provide some more detail on

one example application (included in Table 4-2). Gupta et al. [35] developed a

privacy-preserving system for e-mail classification that allowed end-to-end en-

cryption of e-mails, so they would not be visible to the email service provider,

while allowing the e-mail provider to perform spam filtering and topic extraction.

This was done using a two-party Joint Data Provider MPC where one party is the

e-mail recipient and the other party is the e-mail provider. The e-mail sender is

involved in that they encrypt the e-mail to the receiver using a standard end-to-end

encryption scheme such as OpenPGP, but otherwise is not involved in the MPC.

The system than can perform spam filtering using a Naı̈ve Bayes classifier as an

MPC implemented using Yao’s garbled circuits protocol that protects the e-mail

contents from the provider, and protects the spam classification model from the re-

cipient. Since all the operations needed for the classification are linear, this can be

performed efficiently within the MPC (about 358ms per e-mail with a large (5M

features) classifier model). Many other privacy-preserving machine learning ap-

plications have been built using MPC, including training neural networks [99, 55],

neural network inference [64, 42, 52], linear regression [58, 28], and evaluating

decision trees [97].

4.4 Trusted Execution Environments

Another approach to secure computation relies on placing trust in an external com-

puting environment out of the data owners control, known as a trusted execution

environment (TEE). The common approach to implementing a trusted execution

environment is to use a secure hardware enclave, where a hardware vendor is

trusted to produce a processor that implements an execution environment which
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Figure 4-11: In secure remote computation a user relies on a remote server that

provides assurances of confidentiality and integrity to perform a sensitive compu-

tation. Graphic is from [18].

can be trusted even when operating on a host that is otherwise not trusted. The

idea, illustrated in Figure 4-11, is that a user can execute potentially sensitive soft-

ware on an untrusted server if that server can provide some facilities to guarantee

confidentiality and integrity.

CPU manufacturers have attempted to provide TEEs by combining special

instructions, encrypted memory, and some way of assuring users they are using

the TEE. Intel’s Software Guard Extensions (SGX) is a primary example, and it is

implemented by Intel processors intended for both consumer and server machines.

The goal is to let an external user send code and data to the secure enclave over an

encrypted channel, run the code on the data in the enclave, and return the results

over the encrypted channel. An observer in the cloud, even a host operating system

on the same CPU, should not get any useful information about the computation or

the data.
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As will be further discussed below, there are reasons to be skeptical about

this endeavor. In general, almost all complex software systems are buggy in ways

that affect security. SGX in particular has failed to live up to its security guarantees

since it was released. Beyond the usual challenges, however, the inherent design

goal of SGX raises additional reasons to be doubtful that it can ever achieve its

stated aims. The goal of SGX is to allow a process protected in an enclave to share

resources with a general purpose processor that is also executing untrusted pro-

grams, and the goal of sharing resources without leaking information poses con-

siderable challenges. It is known to be remarkably hard to keep close observers

from learning useful information about a running program. Put the other way, it

is remarkably hard to keep a program from leaking useful information even when

the available observation channels are narrow and well confined. For hardware

enclaves like SGX, the challenge is exacerbated by the amount of hidden state

in modern CPUs, particularly various caches, that are shared among processes.

The state of these resources is architecturally invisible (that is, not readable by

provided instructions), but can be deduced through indirect means whereby an

observing process can learn information about another process sharing the same

CPU. Spectre [43] and Meltdown [51] are two well-known examples of attacks

that exploit this shared microarchitectural state; the original attacks did not com-

promise SGX, but subsequent similar attacks did, as discussed in Section 4.4.2.

Spectre exploits a branch prediction cache; Meltdown exploits how speculative

execution, a crucial performance feature, affects the memory cache.

4.4.1 Overview of Intel SGX

In this section we discuss aspects of Intel’s SGX approach to providing a trusted

execution environment. The idea is to leverage trusted hardware on a remote

computer to provide both confidentiality and integrity of a program that performs

a potentially sensitive computation. A number of trust relationships are required
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Figure 4-12: The trust relationships associated with secure enclaves. Graphic is

from [18].

to accomplish this as shown in Figure 4-12. The data provider must trust the

developer of the software and so the nature of the queries being made by the

software must be checked for potential disclosure. Beyond this, the data provider

must also have confidence that the designer of the SGX enclave does not provide

inadvertent paths for data leakage.

The trusted hardware provides a sealed environment which in principle can-

not be accessed even by a corrupted host operating system. There are several steps

in running code under SGX:

1. A user must first verify that they are communicating with software hosted

by the secure enclave on the remote server tasked with performing the com-

putation. This is accomplished using software attestation in which a cryp-

tographic key exchange provides a hash of the contents of the enclave. This

establishes that only the remote user’s data and software can be loaded into

the enclave as the computation proceeds.
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2. The remote user must also verify the attestation key used to sign the attes-

tation. This is accomplished by checking against an endorsement certificate

provided by an external remote Intel attestation service. This certifies that

the remote service is running a verified Intel SGX enclave. This endorse-

ment is done blindly, so that the specific processor enclave is not revealed

to Intel.

3. The remote user can then send private data requiring secure processing over

an encrypted channel to the enclave. The data are then processed within the

enclave, using the software that was attested to in the first step. Results can

then be returned to the remote user over the encrypted channel.

At the end of a successful attestation process, the external user will have

confirmed that it is communicating with a value enclave containing the expected

software, and will have a symmetric key to use to establish a secure channel to

that enclave.

In order to provide the desired security properties, SGX enclaves set aside in

memory a protected region called the Processor Reserved Memory (PRM). The

CPU hardware prevents any access to this memory from non-enclave sources.

This includes even privileged software like the operating system kernel, the hy-

pervisor (software that manages virtualization), and even hardware controls built

in to the server motherboard such as the System Management Monitor. The PRM

is composed of 4KB encrypted pages of memory containing the private data and

code. The total amount of such memory is currently 128 MB, but future SGX

implementations may provide additional protected memory.

For applications that require more memory, data can be stored in main mem-

ory and one of the features of SGX is automatically encrypting memory from the

enclave before it is moved to main memory, and decrypting the encrypted data

when it is reloaded into the enclave. The pages associated with a given enclave
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are accessed through an enclave page cache (EPC). The CPU enforces the associ-

ation between a given page and its associated enclave. When protected code and

data are to be executed by the CPU they are decrypted rapidly by a hardware mem-

ory encryption engine. The computations themselves are performed in the clear

by the CPU functional units and the results are then re-encrypted for storage in

the PRM. When main memory is used, however, it is important to ensure that the

access patterns (which are visible to the host and processes outside the enclave)

do not reveal sensitive data. This can be done using Oblivious RAM (ORAM)

techniques [67], but for many applications this induces a significant performance

penalty. It also only hides which memory block is being accessed, but not the

timing and number of memory accesses, so ORAM by itself may be insufficient

to prevent inferences from revealed access patterns.

During the initialization process code and data that are not viewed as sen-

sitive are loaded from unprotected memory into the enclave. Once this loading

process is completed a cryptographic hash of the contents is computed as a way

of verifying to the remote user the initial contents of the enclave. The attestation

process is used to assure a user that they are communicating with a valid SGX

enclave that contains the code as loaded by the user.

The execution of code in the enclave is achieved using a special set of in-

structions. This is similar to the context switch that takes place when kernel level

code is executed but the execution in the enclave itself occurs at the lowest level of

privilege for the processor. In fact, processes at a higher level of privilege such as

the kernel cannot execute enclave code. This is meant to protect the secured code

from a possibly corrupted kernel, but is also meant to protect the operating system

from malicious or errant enclave software. If an interrupt is signaled or there is

a page fault or other exception, the CPU does not directly service the fault, ex-

ception, or interrupt as it would in normal operation. Instead, the CPU first saves

the enclave state in memory thus ensuring it is encrypted, and then transfers con-
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trol outside the enclave. In this case, the CPU does overwrite registers to prevent

leakage of information

Since SGX runs programs on the decrypted data, programs running in the en-

clave can have similar performance to normal executions with unencrypted data

on the CPU. There is some overhead because of the limited memory and instruc-

tions available within the secure enclave, and because of the need to encrypt data

before it is stored in main memory (and to decrypt when data is restored). This

means many applications can run within SGX with overheads of 10-20% over

runtimes in a conventional CPU. This assessment, however is heavily dependent

on the type of application, since to execute securely within SGX requires care-

fully designing the program to not have any memory access pattern or timing side

channels that would be observable outside the enclave. For many programs, the

changes needed to make them side channel free are complex and substantially

increase the running time.

4.4.2 Security issues

The development of SGX was a notable step forward in enabling widespread

trusted computing, and major cloud providers are offering secure computing ser-

vices using SGX and similar competing technologies from other vendors. How-

ever, as we describe in this section, SGX has suffered repeated security issues

since its inception. We cover here only some of the issues with the purpose of

indicating the nature of the difficulties that have been uncovered.

All of the attacks described here assume that the operating system has been

compromised and that the attacker has basically full control of the entire compu-

tational environment. This may seem like an extreme assumption, but it is exactly

the threat model for which SGX is designed. In addition, there have been many

demonstrations that once an attacker has identified a vulnerability in a system, it
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can often be amplified to achieve a full host compromise. Recall that the secu-

rity guarantees claimed by SGX provide integrity and confidentiality even in the

presence of a compromised host.

Foreshadow Modern processors use a variety of techniques to hide the latency

between the execution of instructions in the CPU and access to data in memory.

For example, memory caches were developed to speed up delivery of data to the

processors. In addition, most modern processors use techniques such as specu-

lative execution to predict the value of various operands that are being fetched

from memory and thus continue executing instructions. When the memory access

completes, and the actual instruction to execute is determined and fails to match

the speculatively read operand, the system is able to roll back the speculative exe-

cution and no harm is done to the (architecturally visible) state of the program. If,

however, the prediction was correct, the CPU has effectively hidden the latency

incurred by the memory access.

In 2018, security researchers [51] revealed that speculative execution in Intel

processors could be used to break the memory isolation between the kernel and

user memory spaces, thus allowing leakage of secret data. This was accomplished

by causing an errant read of data in a protected area of memory. When this occurs

the processor throws an exception and invokes a handler to respond to the fault.

However, the processor continues to execute speculatively. This gives an attacker

time to manipulate the processor cache and thus leak sensitive kernel data.

This attack in and of itself cannot be used to leak secret data from an SGX

enclave because, as mentioned previously, SGX enclaves do not use exceptions

when illegal accesses of enclave memory occur. However, SGX does use standard

exception handling for memory management. This is required because the oper-

ating system must be able to swap memory pages in and out. Since the attacker

has complete control of the system, they can mark SGX memory as unavailable
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and trigger an exception and the concomitant speculative execution as the excep-

tion is handled by the operating system. Since SGX data is not encrypted when it

enters the cache, the secret information can be extracted [93]. In fact this problem

affects not only SGX, but breaks isolation of virtual machines running under a

hypervisor. This vulnerability was given the name Foreshadow to highlight the

use of speculative execution.

CacheOut After the demonstration of the Foreshadow exploit, Intel mitigated

the issue by modifying the hardware in the latest Core i9 series.3 However, secu-

rity researchers demonstrated that it was still possible to leak sensitive informa-

tion though a set of mostly undocumented buffers used by the CPU to load data

in and out of the cache. This type of attack by itself, known as Microarchitectural

Data Sampling (MDS), is not terribly practical; it has been compared to “drinking

from a fire hose” because it was not thought to be possible to control what data

were transiting through the various buffers. In addition, to counteract MDS-type

exploits, Intel re-enabled a legacy instruction to clear the various buffers so that

they could not be read as a result of a fault-type attack like those described in the

section above on Foreshadow.

Intel’s buffer overwrite mitigations, however, are not completely effective.

The various buffers are also used when the cache evicts data and the operation

is non-blocking. In the CacheOut attack [95], an attacker first evicts data from

the Level 1 cache, and subsequently uses a faulting or assisting load to recover it

from one of the undocumented buffers. This is even effective even on Intel’s lat-

est generation of processors that have hardware countermeasures against exploits

like Foreshadow and MDS. Security researchers have demonstrated that this type

of manipulation of the Level 1 cache can leak a variety of sensitive information

including data from SGX enclaves. Schaik et al. [95] demonstrated using this at-

3Software mitigations were developed for processors manufactured prior to 2019, but because

these mitigations are performed in software, they do incur a performance penalty.
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Figure 4-13: Extraction of an image from an SGX enclave using CacheOut.

Graphic is from [95]

.

tack to extract image data stored in an enclave as shown in Figure 4-13. Because

the adversary does not have total control over the operation of the processor, the

recovery of the image is not perfect but it is certainly recognizable. This attack

does require control of the host operating system, but it again violates the security

guarantees of SGX on Intel’s most advanced hardware.

SGAxe [94] The CacheOut exploit described above was used to extract a de-

crypted Enhanced Privacy ID (EPID) key used for attestation of SGX enclaves.

The Intel attestation service provides verification that the enclave to which the

user is communicating is a genuine SGX enclave by validating an attestation key

derived from keys stored in the hardware. These EPID keys are generated by a

quoting enclave and sent to the remote user. EPID keys are never meant to appear

in the open. Instead they are used as part of a key exchange protocol to generate a

session key that secures a private channel between the user and the enclave. More-

over, these keys are unlinkable, in that the key verifies an enclave is genuine, but
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does not provide information about the processor associated with the key. This

blind attestation property is a feature of the attestation protocol, which was de-

signed to ensure that enclave users maintain some privacy rather than needing to

disclose to Intel every time a particular enclave is used. This property means,

however, that an enclave user is not verifying a specific enclave, but only that the

enclave is valid and contains the expected data in memory.

A leaked EPID key can be used to forge attestations that convince a remote

user that they are communicating with an authenticated enclave when, in fact, they

might be communicating with software simulating an enclave. This, in principle,

constitutes a breakage of the entire SGX attestation ecosystem.

Plundervolt Modern commercial CPUs provide special purpose software and

hardware interfaces to control processor voltage and frequency. These interfaces

are privileged, but could be used by an attacker that has arbitrary access to the

operating system. The interfaces are made available because some users wish to

overclock processors to increase performance while others wish to dissipate less

power from a processor when it is idle. However, the processor is not guaranteed

to return correct results for all possible settings of voltage and frequency that

can be accessed using these interfaces. While this can produce computational

faults, it can also be used to violate SGX security guarantees. Security researchers

were able to show, for example, that they could use these interfaces to impose

faults in the middle of an AES encryption and thus infer a confidential AES key

stored in SGX. More concerning is the ability to have SGX write data stored in

encrypted memory in an unencrypted form to memory outside the enclave. This

exploit was named Plundervolt [56]. Intel has released several firmware patches

that mitigate such attacks. The patches lock the voltage settings on processors

and must be removed if one wishes to modify the voltage or frequency. It is

thought that executing an attack using this approach is most likely quite difficult
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but it does underscore the fact that the software and hardware environment of a

modern processor is sufficiently complex that guaranteeing security is a significant

challenge.

Attempted Mitigations As new attacks on SGX are demonstrated, Intel has

released patches aiming to mitigate attacks. Attacks done by responsible secu-

rity researchers (including all the examples mentioned earlier in this section) are

reported to the vendor through a responsible disclosure process, and kept from

public release until the vendor and users have an opportunity to mitigate the dis-

closed vulnerability. Hence, most of the discovered attacks were not reported until

after mitigations could be developed.

Figure 4-14, from Schaik et al. [95], shows the status of various generations

of Intel processors relative to the vulnerabilities discussed above. As can be seen

in the Figure, while some of the vulnerabilities discussed above have been miti-

gated, exploits like CacheOut have not. Since the hardware cannot be modified

after production, many of the mitigations require modification of the processor

microcode or operating system software. This can incur performance overhead.

The hardware mitigations, designed into subsequent generations of the processor,

may also incur performance cost if they require flushing shared state or restricting

the use of hardware resources.

The point of this section is not to disparage the objectives or design of Intel

SGX. Indeed, one gets an appreciation for the complexity of modern processors

and the ingenuity of Intel’s engineers in designing and adding a TEE to a complex,

performance-driven processor. The main conclusion is that, given the complexity

and amount of shared state in modern processors, it is unlikely that all leakage

issues can ever be mitigated with this design.
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Figure 4-14: The status of various Intel processors vulnerability to vulnerabilities

discussed in Section 4.4.2. A green check-mark indicates the vulnerability has

been mitigated. A red X indicates the processor remains vulnerable. Table is from

Schaik et al. [95].

In their presentation to JASON [16], Jonan Chu and Daniel DeGraaf of the

NSA confirm that the speculative execution vulnerabilities and the presence of

side channels show that some trust must be placed in platform software and the

security of the external computing environment. For example, the Defense In-

formation Security Agency (DISA) requires that in order to process Controlled

Unclassified Information (CUI) such as data protected under Title 13 or Title 26,

the data center must be located in the US, the administrators must undergo back-

ground checks, and there must be physical separation from commercial tenants.

Such restrictions seem all the more challenging if one wishes to link multiple en-

claves to perform a distributed computation. Further, if such protections can be

ensured, it is not clear that the SGX protections add much—they are designed

exactly for the opposite scenario, where the surrounding computing environment

cannot be trusted at all.

In summary, SGX cannot be relied on to provide bullet-proof security in a

hostile environment. That does not mean it is without value, although its potential

value for US statistical agencies is unclear. Many security discussions, especially

as regards SGX, are phrased as if the only threat is an attacker. Attackers are a

threat, but various sorts of failures commonly result in leaks of confidential data.

Commercial clouds are complex environments with layers of authentication, au-

thorization, and configuration. Simple web searches often turn up open servers
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with confidential data exposed. Even if simple mistakes are avoided, the whole

setup is somewhat fragile. Vendors introduce improvements and new tools all the

time. On the whole this is progress, and good. But it is a common occurrence

that configurations that were adequate in one environment may not be later, and

that upgrades that were supposed to be backwards-compatible sometimes are not.

A few of these unfortunate circumstances can combine to leave accessible things

that were meant to be inaccessible. And it is here that TEEs, and SGX, despite its

vulnerabilities, may have some value. SGX provides additional disclosure protec-

tion as it is keeping its confidential data in encrypted memory. That is, although

SGX does not provide the claimed security properties under its intended threat

model, as long as it is not used to provide a false sense of security it can be an

additional layer of protection against mistakes.

4.4.3 Future approaches to secure enclaves

As discussed in the previous section, implementing a secure enclave on a produc-

tion processor is challenging. Modern Intel processors make use of techniques

such as speculation and hyperthreading to enhance performance. But despite the

presence of an enclave, these features make it difficult, if not impossible, to se-

curely isolate a computation. As has been seen above, features like speculation

rely on sharing architectural state and this can be exploited to leak information.

JASON was briefed by Prof. Srini Devadas of MIT who described ongoing

efforts to design and build processors where isolation is built into the hardware

from the ground up. Devadas described two designs.

The first, called Sanctum [19] makes minimal changes to the hardware of an

open source RISC V ISA core. The processor provides multiple cores but does

not support speculative execution or hyperthreading as these features require shar-

ing among processes of the micro-architecture. The architecture, which has been
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implemented on a field programmable gate array (FPGA) employs the following

strategies to enforce isolation:

• data caches are isolated using partitions,

• page tables are isolated inside the enclave,

• cache rows are partitioned using hardware support,

• DRAM pages are colored, so that the partitioning in the cache matches the

striping in DRAM,

• information transferred to insecure memory is encrypted, and

• oblivious RAM is used to hide memory access patterns.

These strategies do incur a price in terms of performance, particularly the lack of

speculative execution which can significantly boost processor performance. In-

terestingly, the hardware modifications required to implement the measures above

are rather minimal.

Because speculative execution is considered essential for performance, a

more advanced processor design called MI-6 [10] is also being developed. In this

design, data buffers are cleared every time a processor security monitor switches

contexts. In addition a processor core that executes enclave code disables spec-

ulation. At present, hyperthreading cannot be supported while still preserving

isolation.

At present, such processors that enable security as a “first class citizen” are

not likely to be widely available on a five year time horizon, but it remains impor-

tant to track progress in this area as availability of such processors would make it

possible to run securely even in the presence of a compromised host computer. If

a sound secure enclave could be implemented that satisfies the goals envisioned
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for SGX, it could allow for a self-contained program to be audited for desired

disclosure properties, and for external users to know that this is the only program

that will have access to their data.

4.5 Programming for Secure Computation

Designing new cryptographic protocols and proving their security requires a high

level of expertise and experience. Over the past decade, however, there have been

many efforts to make secure computation more accessible to developers without

cryptographic expertise. This section provides a brief introduction to what must be

done to program applications using secure computing technologies, with a focus

on what it would take to turn existing data analysis implementations into efficient

and secure computations.

4.5.1 Circuit-based protocols

Both general-purpose FHE and MPC protocols operate on either Boolean or arith-

metic circuits. This means algorithms that execute as secure computations must

be converted to fixed circuits, where the circuit generated depends on the input

size, but otherwise cannot depend on the sensitive data.

This means we cannot have traditional programming structures like if state-

ments where the inner block executes only when the tested predicate evaluates to

true. In a secure computation where the predicate depends on sensitive data, it is

necessary to hide from the evaluator whether or not the predicate was true, and

hence, whether or not the inner block executes. Similarly, we cannot have loops

where the loop bound depends on sensitive data. If the evaluator can determine

how many times the loop body executes, and that number depends on sensitive

data, this would leak information about the sensitive data the secure computation

is supposed to protect.
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Hence, all secure computations must execute in a data oblivious way. This

means that anything that is observable about the execution cannot depend on sensi-

tive input data. If the computation is represented by a fixed circuit, this property is

easily established. But, representing programs as circuits is unnatural and difficult

for programmers, and has the further problem that the circuits for most interest-

ing secure computations become too large to store in memory as the input size

scales. Recall that unlike hardware circuits where gates can be reused, in a secure

computation protocol such as Yao’s garbled circuits protocol, each Boolean gate

can only be executed once; evaluating the same gate more than once would leak

information about its inputs, so each gate that executes during a computation must

have its own garbled table of ciphertexts and, as a result, interesting computations

require many billions of gates).

To help manage the construction of secure computations while satisfying the

programming constraints discussed above, numerous programming frameworks

have been developed that allow secure computations to be described in a way

that is similar to traditional programming, but that compile those programs into

secure computation protocols. Tools exist for both FHE and MPC, with some

similar aspects such as converting a program to an circuit that will be efficient to

execute. Other aspects are specific to the FHE or MPC protocol that will be used.

In addition, many tools provide support for hybrid protocols, where specialized

protocols and state can be used to provide oblivious random access memory and

other functionalities.

Many tools and libraries have been developed to enable programmers with-

out cryptographic knowledge to compile programs into secure computation pro-

tocols. Hastings et al. [36] provides a survey of tools for programming MPC

applications. One advantage these tools provide is that although it may require

more understanding of the protocols to produce an efficient implementation, there

is little risk that a programmer will use these tools in a way that produces an in-
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secure implementation—security is ensured by the cryptographic protocol, and as

long as the implementation provided by the tool is correct, there is nothing a pro-

grammer can do to violate these. The risk is with the outputs that are decrypted

at the end of the protocol, so it is still important that a full disclosure analysis is

done on the function to be computed to understand what could be inferred from

these outputs.

4.5.2 Secure enclaves

Adapting programs for execution in secure enclaves poses the opposite difficulty.

Programmers who lack deep understanding of the security issues involved in se-

cure computation will produce efficient implementations with little effort, but it is

likely that those implementations will not provide the desired security properties

(even if the enclave is invulnerable and provides the promised protections).

The SGX mechanisms provide trusted execution within the enclave, but do

not ensure that the externally observable behavior of the program will not leak

sensitive data. This externally observable behavior includes the memory access

patterns of the program that are revealed whenever storage is off-loaded from the

limited enclave storage to main memory. Although the contents are encrypted

with a key maintained by the enclave, and so are not visible to the external adver-

sary, the reads and writes to main memory are visible and can potentially reveal

sensitive information about the data in the enclave if the memory access pattern

depends on that data. Another source of leaks is timing side channels, which can

often be exploited to leak cryptographic keys. If the execution time of a process

in the secure enclave depends on the sensitive data, an adversary who can observe

those timings may be able to infer sensitive data. Programs in SGX enclaves must

also avoid other vulnerabilities. For example, it has been shown that memory cor-

ruption vulnerabilities in programs running within SGX enclaves can be exploited

to leak data from the enclave [17].
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The use of SGX or any other TEE does not absolve the programmer of insur-

ing that the execution does not exhibit side-channels that could leak information.

Hence, to provide the desired confidentiality properties, programs that execute in

SGX enclaves must be carefully written and audited to ensure that nothing ob-

servable about their execution depends on sensitive data. There are constant time

implementations of many cryptographic primitives available, and methods such as

oblivious access to RAM can be used to hide memory access patterns, but these

need to be used carefully; their use can incur significant performance overhead for

many applications.
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5 CONCLUSIONS

To conclude, this section first suggests specific ways to use MPC for Census Bu-

reau use cases, then provides a general discussion of the importance of thinking

about and managing trust in secure computing systems. Section 5.3 gives re-

sponses to the sponsor’s questions.

5.1 Mapping MPC Technologies to Census Bureau/BEA appli-
cations

Having examined the three Census Bureau use cases discussed in Section 3 and

briefly surveyed current approaches to secure multiparty computation, we discuss

here potential mappings of these technologies to the use cases. We focus here on

the use of MPC as JASON believes this provides the best short term opportunities

for the required computations. While its capabilities are promising, fully homo-

morphic encryption is far from being practical for the proposed Census Bureau

use cases. It should be noted, however, that aspects of homomorphic encryption

(typically additively homomorphic encryption) are used in many MPC protocols.

The use of Trusted Execution Environments (TEEs) at present does not appear to

offer more security than what could be achieved in a well-managed data center.

5.1.1 Income statistics by business size

This use case (introduced as Use Case 1 in Section 3.2) could be handled via the

single-data steward MPC trust model. As the Census Bureau holds all the requi-

site data, including FTI from IRS, this computation could be performed entirely

within the Census Bureau IT environment. However, it presents an opportunity

to explore the use of MPC for future applications. In addition, as discussed in

Section 4.3.2, the use of the single-data steward model has security benefits even
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Figure 5-1: Mapping MPC technologies to Census Bureau use cases: (a) gen-

erating income statistics by business size (Use Case 1); (b) direct processing of

business data (Use Case 2) using the Commodity Flow Survey as an example; (c)

distributed record linkage (Use Case 3)

within a trusted IT environment like the Census Bureau including providing more

protection against insider attacks or mistakes, as well as simplifying auditing since

all uses of the protected data must now go through a well-defined interface. The

implementation envisioned here is shown graphically in Figure 5-1a. Referring to

the Figure, IRS FTI data would be secured on one server (Server A), whereas the

required Title 13 Business Register Data would be secured on Server B. A private

set intersection protocol would executed within an MPC to match the establish-

ment name and obtain its size. The requisite income fields would then be summed,

also within the MPC, to create the required statistics by establishment size which

would then be decoded and released. With this design, the FTI data would only

be exposed to Server A which could be isolated and carefully managed, and all

computations with that data would be performed within an MPC protocol. This

would not obviate the need for careful information disclosure analysis of all the

functions computed on this data within the MPC to know that the outputs of those

computations do not reveal sensitive information about the FTI inputs.
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5.1.2 Processing business data

The approach used in the BWWC survey, discussed in Section 4.3.3 has some

similarities with the use case (introduced as Use Case 2 in Section 3.3) in which

multiple data providers contribute sensitive data to an economic survey. Since

data providers could not be expected to operate their own servers to participate

in an MPC protocol directly, the delegated MPC model would be appropriate.

Each participating business would provide the requisite data using secret sharing

across two or perhaps more servers operated by different organizations. One of

these could be at the Census Bureau while the others would be owned by trusted

intermediaries. Such an intermediary could be the partner agency in this survey,

the Department of Transportation (DOT), as shown in Figure 5-1b, but could also

be a completely independent entity that is partially trusted by all parties. The

trust level needed here is different from that required in the single data steward

model—instead of needing to completely trust one organization to steward its

data, the businesses providing data would need to trust that the server operators

do not collude, and that at least one of the server operators carefully analyzes the

functions that are computed on the provided data for information disclosure risks.

One challenge in deploying this solution is that because the data is hidden,

there is no way to manually correct for erroneous data. Hence, infrastructure

would also have to be established to ensure that input data were consistent, and

this requires some development by the Census Bureau to provide a means for

the business to upload the relevant data from a company’s database system to

the Census Bureau. Thought must also be given as to how one would handle

missing data either via imputation or simply by exclusion (discussed further in

Section 5.1.4).
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5.1.3 Distributed record linkage

Distributed record linkage (introduced as Use Case 3 in Section 3.4) is in some

ways the most standard use of MPC, as illustrated in Figure 5-1c. In this setting,

two or more agencies interact and perform a secure computation, such as a private

join and statistical computation on the intersection, while preserving the privacy

of their input data. Figure 5-1c shows an interaction where BEA and the Cen-

sus Bureau perform a joint computation with two participants. Applications like

LODES and OntheMap would require an MPC involving more participants such

as state tax authorities. There are MPC protocols that can scale well to support

many participants, but successful deployments like this become more complicated

since all the participants must manage servers that are online and executing com-

patible software.

In practice, this use case may be the most challenging because of both the

organizational challenges in enabling mutually distrusting entities to cooperate

enough to develop the protocol execution system, and because of the complexity

of the function to compute and the scale of the data. Nevertheless, specially opti-

mized algorithms have been developed to perform secure private set intersection

even in a malicious security model with reasonable performance over large data

sets with millions to billions of records as discussed in Section 4.3.3.

5.1.4 Challenges for Secure Computation

We briefly mention here some additional unresolved issues as regards the use of

any secure computation approach.

The first is the need to possibly edit errant inputs. This is done today with

human interaction. Census Bureau analysts who have sworn status so they can

access microdata examine the input data and attempt to correct any errors. Such

a step is, inherently, not possible in a secure computation where the goal is to
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prevent the input data from being visible to anyone but the owner. This raises

a key issue of how to deal with the imperfections in data collection. If the data

validation and correction processes can be expressed algorithmically, then they

can be included in the MPC protocol and executed on the encrypted inputs. An-

other option might be to agree on a set of assertions that the data must satisfy,

in terms of input as well as properties of intermediate results. These assertions

could then be checked during the protocol execution. If any of these data quality

and consistency assertions are not satisfied, the MPC would output an error. But

it is important to ascertain that the error output does not disclose sensitive infor-

mation about the inputs, so simply aborting during the computation is not usually

an option. Finally, the output of the computation could be designed to include

some additional data that could be used to perform sanity checks on the output

and identify cases where there were problems with the data collection. Since this

additional output would be revealed, it enables human inspection of the output

and additional data, but it is also necessary to consider the additional output in the

information disclosure analysis.

This issue is even more serious in cases where data providers may be mo-

tivated to deliberately provide incorrect input data to disrupt the computation, or

cause the output produced to be incorrect in a particular way. For example, a

business providing data may want to deceive its competitors, and can provide a

false value to a Census Bureau survey that will result in misleading published

statistics to achieve that goal. With the delegated MPC model (as suggested in

Section 5.1.2), there is a possibility to allow the delegated data stewards to com-

bine some data providers’ inputs to detect dishonest providers. There could also

be deployments in which the collected data is no longer sensitive after a certain

time has passed, and then the data could be revealed to an analyst who would be

able to retroactively detect errant providers.
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A related issue is the requirement for MPC methods to facilitate imputation.

When input data are missing, the Census Bureau uses various statistical models to

impute the missing information. If this can be automated in some way, for exam-

ple by applying machine learning or other statistical approaches, then, in principle,

secure computation can be applied since any function of the data expressible as a

finite Boolean circuit can be computed. However, whether common approaches to

imputation such as hot-decking can be practically expressed in terms of a secure

computation will require further investigation. There is work in this area applying

decision trees that can be formulated as a secure computation [41].

Finally, further work is needed to understand how one archives data and

results that originate from a secure computation. As discussed in Section 2.3, the

Census Bureau is required to archive the “gold standard” data associated with its

surveys. In so doing, data privacy must presumably be preserved. Archiving of

secret-shared data is possible, but the protections MPC offers may be incompatible

with regulatory archiving requirements. Archiving can either be done in a way

that requires agreement from other operators to restore the data, or in a way that

exposes the data thus giving up the privacy benefits of MPC. In any case, the

implications of archiving requirements on secure computing should be explored.

5.2 Engendering Trust

Secure computing technologies can contribute to creating a trusted system for col-

lecting, storing, and computing on data, but at best, are only part of the solution to

guaranteeing the privacy of business data and to facilitating a more “friction-free”

approach to performing various statistical investigations of the diverse datasets.

The true basis of such efforts ultimately relies on the mutual trust placed in the

various data stewards, and no cryptographic technology will change that. Secure

computation can change how much trust in organizations and humans is required
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for different aspects of a process, but that process still relies on trust in those

organizations.

For example, the IRS must protect the privacy of Federal Tax Information

and so must make sure that any statistical computations on such data do not leak

information. Secure computing technologies can provide ways to perform those

computations without leaking the inputs or intermediate results, but it is up to

humans deploying those technologies to decide what functions can be computed,

and what can be done with the outputs, as well as to ensure that the ways the

technologies are used provide reasonable protections against likely threats.

In performing the Commodity Flow Survey or, for that matter, any survey

relying on provision of data by various business establishments, participants need

assurance that no business sensitive data will be released prematurely to the pub-

lic or competitors. And in performing distributed record linkage of diverse data

sets the relevant data stewards must all protect the privacy guarantees made to

those who contributed the respective data. It is important that however secure

computation technologies are used, the limitations of what they can provide are

well understood, and no one views them as a panacea for addressing potential pri-

vacy risks. The Census Bureau has a long and distinguished record of protecting

privacy in both its demographic and economic censuses, and so it is viewed as a

trusted agency; this is the reason that the IRS and other agencies allow the Census

Bureau to maintain copies of their data, and also in many cases to collect data on

their behalf.

Confidence in the premise that an agency will provide the promised protec-

tions does not stem primarily from their technology choices. Certainly these are

important, but there is more required. For example, when we deposit money in

a bank by giving it to a teller or inserting it into an ATM, we are expressing an

implicit trust in the bank. This is because the bank provides a host of signals

that the establishment is physically secure, but also because there are a set of legal
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guarantees that protect consumers should any corruption such as theft occur. Trust

in data stewards has some similarities except corrective measures are much more

limited—once data is leaked there is no way to reverse the loss in the way one has

to recover funds lost due to a bank theft or default. The loss is one of public trust

and this in turn has serious implications for the quality of future data products.

When a business or agency provides data to a data steward such as the Census

Bureau, they are relying on many things, most of which are not technical. First,

they must rely on the security of their own computer and software infrastructure,

in particular its interactions over a network. This requires technology, but it also

requires the responsiveness of their IT departments. On the data steward side

there is a similar reliance on computers and software, but also physical security

and IT policies, and on the honesty and competence of the people responsible

for administering them. It is also necessary to trust the various committees who

establish data policies and finally, that there is a legal framework that allows some

recourse should all the above protections prove insufficient.

Secure computing technologies provide value when they can reduce com-

plexity by focusing questions on what must be trusted. For example, trusted ex-

ecution environments modify the trust environment from the requirement to fully

trust a large and complex software and hardware stack, to trusting that a secure

enclave is implemented in a way that provides the claimed security properties,

that the vendor responsible for the attestation keys is honest and manages keys

correctly, and that the program running in the enclave, which is hopefully small

enough to audit, is correct and does not produce outputs that would leak sensitive

information about the inputs. Ensuring such properties is challenging, but the task

becomes better defined than what is required in the absence of a trusted execu-

tion environment. When decisions about what programs can be run in the enclave

(or, similarly, in a multi-party computation) are delegated to others, then the data

providers need to trust the organizations and processes responsible for making
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those decisions just as much as they would absent the use of secure computing

technologies. At a trivial level, a query that succeeds in exposing an individual’s

tax information is insecure regardless of the sophistication of the secure comput-

ing technology being employed.

5.3 Responses to the Sponsor’s Questions

Is the Census Bureau researching the technologies best suited to the purpose?

The Census Bureau is researching the technologies best suited to the pur-

pose. Secure computation technologies could play an important role in improving

security and enhancing mutual trust among statistical agencies and data providers.

What investments might make MPC technology operate at scale for a suite of

business statistics?

There are available today several open source and commercial offerings for

MPC technologies. Current MPC offerings from commercial providers are not

immediately suited to Census Bureau applications, and some analysis and devel-

opment would be required to support the scale needed for some Census Bureau

applications like distributed record linkage for large data. Previous MPC deploy-

ments, such as those accomplished by the Estonian government and by Google

and its advertisers, as well as academic results on applications like private set

intersection and genomic analysis, do demonstrate the potential for using these

technologies at the scale needed by the Census Bureau.

The investment that would most likely make secure computation technology

beneficial to the Census Bureau and operate at a scale relevant to Census Bureau

application would be the development of a collaboration among the Census Bu-

reau and a set of experts in MPC, both in industry and academia with the objective

of setting up a set of pilot projects. We discuss this further in our recommenda-
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tions below. Ultimately, if these pilot projects are successful, the next step would

be building an in-house team of developers to evaluate MPC designs and develop

special purpose MPC protocols for particular operations needed to achieve the

scalability required for the Census Bureau.

If MPC is chosen to perform the computation in a Delegated MPC model

where the Census Bureau operates one of the servers and another agency oper-

ates the other server, data providers may be more willing to participate in data

collection because of the reduced reliance on a single data collector and because

the trust is now distributed over multiple data collectors working securely in con-

cert. Data providers still need to trust the security and correctness of their own

hardware and software, but now only need to trust that the delegated server oper-

ators do not collude, and that the processes they use to decide what computations

can be run on the data are administered responsibly. The data providers would be

trusting that the implementations of cryptography and the various protocols are

correct and provide the expected security properties.

Are there medium-range feasible SMC tools that could be used to enhance ap-

plications using record-level linkage without ingesting the full supplemental

database?

Many record-level linkage problems can be viewed as private set intersec-

tion with some computation on the intersection. There are known algorithms to

perform private set intersection very efficiently using custom MPC protocols that

can already scale to sets with billions of elements (see Section 4.3.3). These ap-

proaches cannot be used directly for all the types of record linkage required for

applications like OnTheMap since they can only perform exact equality tests in

the join and the computations that can be performed on the intersection are limited

(e.g., sum), but they may provide a framework upon which such applications can

be built.
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Would chaining SGX enclaves in a commercial cloud environment support com-

plex processing on a scale that meets the Census Bureau’s needs?

Trusted execution environments are widely deployed using secure hardware

enclaves implemented by Intel, AMD and others; the major cloud providers em-

ploy such hardware to provide secure computing services in data centers. In prin-

ciple, given the current computational throughput of Intel’s SGX enclaves, it is

plausible that chaining SGX enclaves in a commercial cloud environment could

support processing on a scale that meets the Census Bureau’s needs. However,

as we argue in Section 4.4.1, the current vulnerabilities and fundamental security

challenges associated with such enclaves mean that the claimed security proper-

ties they tout are unlikely to be achieved in practice. Since SGX cannot provide

security in its intended threat model, it is necessary to establish the security of the

host system and data center also, and if the security of these components can be

established the additional benefits of SGX are in question. As discussed in Sec-

tion 4.4.2, JASON has serious concerns about the security of SGX in the threat

model for which it is designed. Because of the present-day security vulnerabilities

of SGX, it would be necessary to verify the physical and software security of all

the cloud environments being utilized. The secure enclave approach as currently

implemented does not provide much more security than what is obtained using

conventional security approaches for cloud infrastructure.

Does Secure Multiparty Computation (SMC) offer an opportunity to reduce bur-

den on companies while continuing to provide the needed economic data?

There are promising opportunities to use SMC and, in particular, MPC to

collect and process data in a way that would address security and privacy concerns

of companies providing data and that may allow them to participate in surveys like

the Commodity Flow Survey in a more direct way through automated interaction

with those companies’ data repositories. The best way to answer this question
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would be to undertake a pilot study as discussed in the recommendations below

to determine if the use of MPC will enhance mutual trust among data providers

and the Census Bureau and also provide a means of communicating data to the

Census Bureau that reduces respondent burden.

How do we build trust in SMC so that companies are willing to participate?

As discussed above, engendering trust in a secure computing system will re-

quire verification that the proposed use of SMC does indeed provide the requisite

security, and that measures of verification of that technology are also trustworthy.

Such measures include code reviews of the various queries and demonstrations

that collusion among any parties can be deterred or detected. Finally, an issue

for further research is whether it is possible to use formal methods to verify the

correctness of an MPC implementation, and to use automated tools to examine

the queries to be dispatched via SMC for potential disclosure. Such an approach

might be useful in automating whether a proposed query might leak sensitive in-

formation, and may reduce some of the dependence on human review. This is

a challenging problem, but if some progress along such lines could be made it

would both streamline the process of processing the data collected, and increase

confidence that a program executed using SMC will release only that information

that is mutually agreed upon.

Are there other conceptual approaches we should investigate?

JASON believes the proposed investigation of secure computation technolo-

gies is the right first step.
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5.4 Findings

The following are general findings:

1. Secure computation technologies are not a substitute for query and disclo-

sure avoidance analysis. It is essential that any functions to be computed

be reviewed for potential disclosure of sensitive information, and that all

implementations be carefully reviewed for potential leaks. Additionally,

secure computation cannot in and of itself be the determining factor in de-

ciding if a query or calculation satisfies a required statutory benefit.

2. Secure computation technologies provide some opportunities for replacing

trust in humans and processes with trust in technical solutions, but can only

partially reduce the need to trust humans and processes. In any potential

deployment, it is important to consider the required security and disclosure

properties, and to understand who or what is responsible for different as-

pects of ensuring them.

Our finding on fully homomorphic encryption is as follows:

3. Fully Homomorphic Encryption (FHE) is unlikely to be of use for any Cen-

sus Bureau application in the foreseeable future. The computational costs

associated with FHE are prohibitive for any Census-scale computation, and,

although there has been rapid progress in reducing computational costs over

the past several years, major breakthroughs would be needed before FHE

becomes practical for the types of applications currently under considera-

tion by the Census Bureau.

The following are our findings on multi-party computation (MPC):

4. MPC is a well-studied although not fully mature technology with tools
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available for building MPC applications, successful deployments, and well-

understood security properties.

5. MPC can be used to compute any function expressible as a circuit securely,

but the costs, dominated by network bandwidth, of general purpose MPC

are high.

6. For some computations, sufficiently efficient MPC solutions are known that

can scale to billions of inputs, including solutions for tabulation and private

set intersection with aggregation.

7. Using MPC securely requires attention to implementation details. It can be

used to eliminate the need to trust other participants in the computation, but

does not absolve one of the need to review the disclosure risks of the func-

tion to be computed, or the need to trust one’s own software and hardware.

8. By design, using MPC means that data inputs are not visible for human

review during the computation. Any data editing procedures must either

be fully automated or performed by the data providers or perhaps a trusted

third party.

9. Imputation of missing data can be performed within MPC in principle, but

further work will be required to determine whether it can be performed for

applications at Census scale.

The following are our findings on use of secure enclaves, in particular, Intel SGX:

10. SGX is designed for a very specific threat model: running code on a host

where the operating system could be compromised. In principle, it enables

running code in the secure enclave without exposing any data under protec-

tion of the enclave to the compromised host.
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11. SGX currently does not provide the promised protection, and has been vul-

nerable to known exploits for its entire history. Recent vulnerabilities not

only allow leakage of data from a single enclave, but enable forged attesta-

tions of the enclave state, completely breaking the security premises of the

SGX ecosystem.

12. If a sound and secure enclave could be implemented that satisfies the goals

of SGX, it could allow for a self-contained program to be audited for desired

disclosure properties, and for external users to verify and validate that this

is the only program that will have access to data deemed sensitive.

13. Adapting a program to run securely within SGX (or other Trusted Exe-

cution Environments) requires specialized expertise, the absence of which

increases the risk that sensitive information is leaked.

14. At present, SGX provides no clear advantage over the trusted data steward

model for the use cases of interest to the Census Bureau.

15. New, potentially more secure designs for hardware enclaves are under de-

velopment, but are not likely to become widely available within a five year

time horizon.

The following are our findings on the use of secure computation technologies for

applications of interest to the Census Bureau:

16. There are potential uses of MPC technologies for two types of Census Bu-

reau applications:

• The Delegated MPC model may provide an improved expectation of

trust when the Census Bureau wants to collect and analyze data from

providers who may be reluctant to participate owing to concerns of

security and confidentiality.
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• For applications where the Census Bureau and other agencies want to

compute jointly on separately-stewarded data, the Joint Data Provider

MPC model may provide a way to satisfy regulatory constraints with

less reliance on inter-agency trust.

17. Three aspects of Census Bureau applications could pose challenges for the

use of MPC technologies:

• First, using MPC means that the data inputs are not visible for human

review. Any data editing procedures must either be fully automated or

performed by the data providers themselves. Any auditing of provided

data or mechanisms to detect misbehaving data providers must also be

fully automated, so algorithms used to aggregate such data much be

resilient to inputs that may be provided maliciously.

• Second, imputation of missing data can be performed within MPC in

principle, but, depending on the specifics of the imputation method

and the size of the data, it may be practically infeasible. Further re-

search is required regarding this issue.

• Third, archiving of secret-shared data is possible, but the protections

afforded by MPC may be incompatible with regulatory archiving re-

quirements. Archiving must either be performed in a way that pre-

serves data privacy, thus requiring agreement among the data providers

when the data are restored, or in a way that combines the data, thus

giving up the privacy properties provided by MPC.

5.5 Recommendations

JASON’s recommendations are as follows:

1. JASON recommends that the Census Bureau undertake with BEA a pilot

study to consider the use of the Single Steward model of MPC in order
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to link confidential microdata. The initial pilot should be done using data

fully accessible to the Census Bureau to gain experience without any cross-

organization complexities. The initial computation should be specifiable

as a simple program (i.e., code fits on one page) that can be effectively

reviewed for potential query disclosure. If successful, a subsequent pilot

should be undertaken in partnership with an external data provider and a

simple joint computation should be performed.

2. JASON recommends that the Census Bureau undertake a pilot study to con-

sider the use of the Delegated MPC model in performing the Commodity

Flow Survey. A key goal of this study should be to investigate whether

such an approach could mitigate privacy concerns for businesses as regards

sharing of confidential business data with the Census Bureau, enhance trust

(in particular whether there are mutually trusted organizations that would

partner with the Census Bureau in the MPC), and whether collecting data

with privacy guarantees would reduce respondent burden by allowing the

respondents to be less selective about the data they provide.

3. JASON recommends that Census Bureau investigate tests for potential dis-

closure of sensitive information by a query so that certain types of queries

can be formally specified with sufficient precision to implement as algo-

rithms without the need for human review. Such automation will streamline

the processing of queries for all MPC models as well the Single Steward

model. Automating query approval would have substantial benefits if pos-

sible, but poses both regulatory and technical challenges that would require

further study.
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[28] Adrià Gascón, Phillipp Schoppmann, Borja Balle, Mariana Raykova, Jack

Doerner, Samee Zahur, and David Evans. Privacy-preserving distributed

linear regression on high-dimensional data. Proceedings on Privacy

Enhancing Technologies, 2017.

[29] Craig Gentry. Fully homomorphic encryption using ideal lattices. In

Proceedings of the Forty-first annual ACM Symposium on Theory of

Computing, pages 169–178, 2009.

[30] Oded Goldreich. Foundations of Cryptography: Volume 2. Cambridge

University Press, 2004.

Secure Computation for Business Data 117 November 23, 2020



[31] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any

mental game or A completeness theorem for protocols with honest

majority. In ACM Symposium on Theory of Computing, pages 218–229,

1987.

[32] Oded Goldreich and Rafail Ostrovsky. Software protection and simulation

on Oblivious RAMs. Journal of the ACM, 43(3), 1996.

[33] S. Dov Gordon, Jonathan Katz, Vladimir Kolesnikov, Fernando Krell, Tal

Malkin, Mariana Raykova, and Yevgeniy Vahlis. Secure two-party

computation in sublinear (amortized) time. In ACM Conference on

Computer and Communications Security, pages 513–524, 2012.

[34] Matthew Graham. LODES/OnTheMap. Presentation to JASON June 18,

2020.

[35] Trinabh Gupta, Henrique Fingler, Lorenzo Alvisi, and Michael Walfish.

Pretzel: Email encryption and provider-supplied functions are compatible.

In Conference of the ACM Special Interest Group on Data Communication

(SIGCOMM), 2017.

[36] Marcella Hastings, Brett Hemenway, Daniel Noble, and Steve Zdancewic.

SoK: General purpose compilers for secure multi-party computation. In

IEEE Symposium on Security and Privacy, 2019.

[37] Brett Hemenway, Steve Lu, Rafail Ostrovsky, and William Welser.

High-precision secure computation of satellite collision probabilities. In

International Conference on Security and Cryptography for Networks,

2016.

[38] Yan Huang, David Evans, and Jonathan Katz. Private set intersection: Are

garbled circuits better than custom protocols? In Network and Distributed

Systems Security Symposium, 2012.

[39] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Mariana

Raykova, Shobhit Saxena, Karn Seth, David Shanahan, and Moti Yung.

On deploying secure computing: Private

Secure Computation for Business Data 118 November 23, 2020



intersection-sum-with-cardinality. Cryptology ePrint Archive, Report

2019/723, 2019. https://eprint.iacr.org/2019/723.

[40] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending

oblivious transfers efficiently. In CRYPTO, pages 145–161, 2003.

[41] Geetha Jagannathan and Rebecca N. Wright. Privacy-preserving

imputation of missing data. Data Knowl. Eng., 65(1):40–56, April 2008.

[42] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan.

Gazelle: A low latency framework for secure neural network inference. In

27th USENIX Security Symposium, 2018.

[43] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg,

Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and

Yuval Yarom. Spectre attacks: Exploiting speculative execution. CoRR,

abs/1801.01203, 2018.

[44] Vladimir Kolesnikov and Alex J. Malozemoff. Public verifiability in the

covert model (almost) for free. In AsiaCrypt, pages 210–235, 2015.

[45] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit:

Free XOR gates and applications. In International Colloquium on

Automata, Languages and Programming, pages 486–498, 2008.

[46] Benjamin Kreuter. Secure Multiparty Computation at Google. Real World

Crypto (https://www.youtube.com/watch?v=ee7oRsDnNNc),

2017.

[47] A. Lapets, N. Volgushev, A. Bestavros, F. Jansen, and M. Varia. Secure

MPC for analytics as a web application. In IEEE Cybersecurity

Development (SecDev), 2016.

[48] Andrei Lapets, E. Dunton, Kyle Holzinger, Frederick Jansen, and Azer

Bestavros. Web-based multi-party computation with application to

anonymous aggregate compensation analytics. http://www.cs.bu.

edu/techreports/pdf/2015-009-mpc-compensation.pdf,

2015.

Secure Computation for Business Data 119 November 23, 2020



[49] Andrei Lapets, Nikolaj Volgushev, Azer Bestavros, Frederick Jansen, and

Mayank Varia. Secure multi-party computation for analytics deployed as a

lightweight web application. Technical report, Boston University, 2016.

[50] Berin Linfors, Grant Degler, and Christian Moscardi. Commodity flow

survey. Presentation to JASON June 17,, 2020.

[51] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner

Haas, Anders Fogh, Jann Horn, Stefan Mangard, Paul Kocher, Daniel

Genkin, Yuval Yarom, and Mike Hamburg. Meltdown: Reading kernel

memory from user space. In 27th USENIX Security Symposium, 2018.

[52] Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. Oblivious Neural

Network predictions via MiniONN transformations. In ACM Conference

on Computer and Communications Security, 2017.

[53] Ashwin Machanavajjhala, Daniel Kifer, John Abowd, Johannes Gehrke,

and Lars Vilhuber. Privacy: Theory meets practice on the map. In

Proceedings of the 2008 IEEE 24th International Conference on Data

Engineering, ICDE ’08, page 277–286, USA, 2008. IEEE Computer

Society.

[54] Daniele Micciancio. Fully homomorphic encryption from the gorund up.

http://cseweb.ucsd.edu/˜daniele/papers/

FHEeurocrypt19.pdf, 2019.

[55] Payman Mohassel and Yupeng Zhang. SecureML: A system for scalable

privacy-preserving machine learning. In IEEE Symposium on Security and

Privacy, 2017.

[56] Kit Murdock, David Oswald, Flavio D. Garcia, Jo Van Bulck, Daniel

Gruss, and Frank Piessens. Plundervolt: Software-based fault injection

attacks against Intel SGX. In 41st IEEE Symposium on Security and

Privacy (S&P’20), 2020.

[57] Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can

homomorphic encryption be practical? In Proceedings of the Third ACM

workshop on Cloud computing security, pages 113–124, 2011.

Secure Computation for Business Data 120 November 23, 2020



[58] Valeria Nikolaenko, Udi Weinsberg, Stratis Ioannidis, Marc Joye, Dan

Boneh, and Nina Taft. Privacy-preserving ridge regression on hundreds of

millions of records. In IEEE Symposium on Security and Privacy, 2013.

[59] Dept. of Transportation. Commodity flow survey.

https://www.bts.gov/cfs, accessed September 29, 2020.

[60] Rafail Ostrovsky and Victor Shoup. Private information storage (extended

abstract). In ACM Symposium on Theory of Computing, pages 294–303,

1997.

[61] Pascal Paillier. Public-key cryptosystems based on composite degree

residuosity classes. In IN ADVANCES IN CRYPTOLOGY —

EUROCRYPT 1999, pages 223–238. Springer-Verlag, 1999.

[62] Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. PSI from

PaXoS: Fast, malicious private set intersection. In Anne Canteaut and

Yuval Ishai, editors, EuroCrypt, 2020.

[63] Oded Regev. The learning with errors problem (invited survey). In

Proceedings of the 2010 IEEE 25th Annual Conference on Computational

Complexity, CCC ’10, page 191–204, USA, 2010. IEEE Computer

Society.

[64] M Sadegh Riazi, Mohammad Samragh, Hao Chen, Kim Laine, Kristin

Lauter, and Farinaz Koushanfar. XONN: XNOR-based oblivious deep

neural network inference. In 28th USENIX Security Symposium, 2019.

[65] Ronald L Rivest, Len Adleman, and Michael L Dertouzos. On data banks

and privacy homomorphisms. Foundations of Secure Computation,

4(11):169–180, 1978.

[66] Ronald L Rivest, Adi Shamir, and Leonard Adleman. A method for

obtaining digital signatures and public-key cryptosystems.

Communications of the ACM, 21(2):120–126, 1978.

[67] Sajin Sasy, Sergey Gorbunov, and Christopher W Fletcher. ZeroTrace:

Oblivious memory primitives from intel SGX. In Network and Distribute

Systems Security Symposium, volume 2018, 2017.

Secure Computation for Business Data 121 November 23, 2020



[68] Internal Revenue Service. IRS form 1040.

https://www.irs.gov/pub/irs-pdf/f1040.pdf, accessed

September 29, 2020.

[69] Internal Revenue Service. IRS form 1065. https:

//www.irs.gov/pub/irs-access/f1065_accessible.pdf,

accessed September 29, 2020.

[70] Internal Revenue Service. IRS form 1120.

https://www.irs.gov/pub/irs-pdf/f1120.pdf, accessed

September 29, 2020.

[71] Adi Shamir. How to share a secret. Communications of the ACM,

22(11):612–613, 1979.

[72] Abhi Shelat and Chih-Hao Shen. Two-output secure computation with

malicious adversaries. In EuroCrypt, 2011.

[73] Erich Strassner and Tina Highfill. Linking confidential federal microdata

to calculate economic statistics by enterprise size: Jason briefing.

Presentation to JASON June 17,, 2020.

[74] Unbound Tech, Inc. NextGen vHSM (Virtual Hardware Security Module).

https://www.unboundtech.com/

virtual-hardware-security-module/.

[75] United States Census Bureau. Business register.

https://www.census.gov/econ/overview/mu0600.html,

accessed August 14, 2020.

[76] United States Census Bureau. OnTheMap.

https://onthemap.ces.census.gov, accessed August 14, 2020.

[77] United States Census Bureau. Statistics of US businesses.

https://www.census.gov/programs-surveys/susb.html,

accessed August 14, 2020.

[78] United States Census Bureau. Survey of Income and Program

Participation. U.S. Census Bureau, accessed August 15, 2020.

Secure Computation for Business Data 122 November 23, 2020



[79] United States Census Bureau. Synthetic SIPP Data. U.S. Census Bureau,

accessed August 15, 2020.

[80] United States Code. Title 26, §6103. U.S.C., 1986.

[81] United States Code. Title 13, §§8, 9, 23(c), 401, 402. U.S.C., 1990.

[82] United States Code. Title 22, §3104(c). U.S.C., 1990.

[83] United States Code. Title 44, §3561, et. seq. U.S.C., 2017.

[84] U.S. Bureau of Labor Statistics. Quarterly census of employment and

wages. https://www.bls.gov/cew/, accessed September 29,

2020.

[85] U.S. Bureau of Transportation Statistics. Standard classification of

transported goods. https://www.bts.gov/archive/

publications/commodity_flow_survey/classification,

accessed September 29, 2020.

[86] U.S. Census Bureau. American community survey.

https://www.census.gov/programs-surveys/acs, accessed

September 29, 2020.

[87] U.S. Census Bureau. Decennial census of population and housing.

https://www.census.gov/programs-surveys/

decennial-census.html, accessed September 29, 2020.

[88] U.S. Census Bureau. Longitudinal-employer household dynamics.

https://lehd.ces.census.gov/, accessed September 29, 2020.

[89] U.S. Census Bureau. North american industry classification system.

https://www.census.gov/eos/www/naics/, accessed

September 29, 2020.

[90] U.S. Census Bureau and Internal Revenue Service. Agreement for the

Review and Approval of U. S. Census Bureau Projects that use Federal

Tax Information, U.S. Census Bureau-International Revenue Service

Research, June 2012.

Secure Computation for Business Data 123 November 23, 2020



[91] U.S. Census Bureau and National Archives and Records Administration

(NARA). Memorandum of Understanding. U.S. Census and NARA,

Febuary 2008.

[92] U.S. Census Bureau, Data Stewardship Executive Policy Committee.

Policy on Title 13 Benefit Statements DS002. Policy Coordination Office,

2018.

[93] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci,

Frank Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and

Raoul Strackx. Foreshadow: Extracting the keys to the Intel SGX

kingdom with transient out-of-order execution. In 27th USENIX Security

Symposium, SEC’18, page 991–1008, USA, 2018. USENIX Association.

[94] Stephan van Schaik, Andrew Kwong, Daniel Genkin, and Yuval Yarom.

SGAxe: How SGX fails in practice. https://sgaxeattack.com/,

2020.

[95] Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel Genkin, and

Yuval Yarom. Cacheout: Leaking data on Intel cpus via cache evictions,

2020.

[96] Xiao Shaun Wang, Yan Huang, Yongan Zhao, Haixu Tang, XiaoFeng

Wang, and Diyue Bu. Efficient genome-wide, privacy-preserving similar

patient query based on private edit distance. In ACM Conference on

Computer and Communications Security, pages 492–503, 2015.

[97] David J Wu, Tony Feng, Michael Naehrig, and Kristin Lauter. Privately

evaluating decision trees and random forests. Proceedings on Privacy

Enhancing Technologies, 2016(4):335–355, 2016.

[98] Samee Zahur, Mike Rosulek, and David Evans. Two Halves Make a

Whole: Reducing Data Transfer in Garbled Circuits using Half Gates. In

Advances in Cryptology–EUROCRYPT 2015. Springer, 2015.

Secure Computation for Business Data 124 November 23, 2020



[99] Yanjun Zhang, Guangdong Bai, Xue Li, Caitlin Curtis, Chen Chen, and

Ryan K L Ko. PrivColl: Practical privacy-preserving collaborative

machine learning. In 25th European Symposium on Research in Computer

Security, 2020.

[100] Ruiyu Zhu, Yan Huang, Jonathan Katz, and Abhi Shelat. The

cut-and-choose game and its application to cryptographic protocols. In

USENIX Security Symposium, pages 1085–1100, 2016.

Secure Computation for Business Data 125 November 23, 2020


