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1 INTRODUCTION 

Since the beginning of the greenhouse debate, policy makers have de

manded from the scientific community predictions of future climate in limited 

geographical areas (e.g., Congressional Districts) and limited time intervals 

(e.g., Convention Time, 2000). Current climate models clearly do not have 

such capabilities, as is demonstrated by large disagreements among the mod

els of continental size regions. Government and private groups have proposed 

programs such as DOE's CHAMMP and UCAR's CSMP to remedy the sit

uation. Largely lost in the debate are fundamental questions such as: What 

is meant by predictability? What can be predicted and over what time and 

length scale? What errors can be expected from predictions? This report 

explores some of the issues by analyzing toy models of climate and existing 

data sets of global annual average surface air temperature. 

We first point out in Section 2 why there is a problem. In these considera

tions we have been much influenced by the work of Lorenz (1963, 1969, 1976, 

1984a, b), who in a long series of papers has thoroughly raised the issue of at

mospheric predictability. In Section 3 we describe our understanding of why 

the current modeling community is so optimistic about fine-scale, long-term 

climate predictions. We raise some questions with respect to this point of 

view in Section 4. Section 5 describes one approach to the problem of predic

tion: That approach based on reducing the dimension of a high-dimensional 

attractor by averaging. We describe the results of analysis of time series 

derived from model runs and data sets in Section 6. Our summary views are 

presented in Section 7. 

While this report raises the issue of predictability, we do not wish to 
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question in any way the value of attempts to model climate. Since real

world climate experiments, other than the one currently underway on the 

greenhouse, cannot be conducted, an understanding of climate can only be 

achieved through computer models. Our basic concern is that models will 

be used to arrive at predictions which mayor may not be meaningful, rather 

than be used to deepen our understanding of climate processes. This deeper 

understanding of climate may lead to alternative, more reliable methods of , 

forecasting than the use of GeMs. At the very least, a more complete un-

derstanding of climate dynamics must lead to much improved future GeMs. 
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2 WHAT IS THE PROBLEM? 

The climate of a region is often thought of as the weather which ordi

narily occurs there. In more scientific terms, climate may be defined with a 

set of long-term statistical properties. Following the work of Lorenz, there is 

widespread consensus that weather is chaotic, with a loss of coherence (for 

consensus neighboring initial conditions) in one to two weeks. This observa

tion places limits on the long-term predictability of weather. Since climate 

is defined in terms of averages, the question of predictability is: "Do there 

exist length and time scales such that the evolution of averaged variables 

(temperature, precipitation, etc.) on these scales is n2i extremely sensitive 

. to initial conditions?" This statement can be quantified in the following way: 

Given the initial conditions, specified with some small error, the system will 

be predictable if there is a time scale T and a length scale L such that at 

some later time t, the averaged variables 

- 1 It+~ l~+t T(x, t) = -L 2 dt' T(x', t')dx' 
T t-f ~-t 

(2 -1) 

satisfy dynamics which do not have exponential growth of small errors. 

Equation (2-1) explicitly introduces the averaging time T and the aver

aging length L. In discussions of predictability, both quantities should be 

considered. Even if there is a time scale T over which the global average tem

perature, for example, is predictable, we can anticipate there will be some 

length scale L( T), less than global, for which predictability fails at the same 

averaging time. 

\Vhile climate is conventionally defined by averages, situations may arise 

where it is of interest to predict quantities other than averages. Examples of 
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alternative quantities include the maximum intensity reached by storms in 

a given period or the minimum rainfall. The problem of predicting extreme 

events is treated in Abarbanel et al. (1990). 

Nonlinear dynamics provides a framework in which to discuss the meaning 

of predictability. We assume that the system under investigation can be 

described by a set of first order ordinary differential equations 

where Yi(t) are selected state variables and n is finite. The orbit of the 

dynamical system, as determined by the evolution of the state variables Y and 

perturbed by small random variations (round-off errors due to floating point 

truncations in computer models, or the "external" noise in observational 

systems), is asymptotically concentrated on an attractor of finite dimension, 

and there exists an invariant asymptotic measure p that is stable under the 

perturbations. The probability measure p describes how frequently various 

parts of the attractor are visited by an orbit. A picture of the physical 

measure can be obtained by plotting a histogram or the value of the variable 

y. What is the predictability of the vector y1 

Given a small ball around any initial condition yeO), the evolution of this 

ball in time may be used to formalize what we mean by predictability of the 

system in a physical sense if not in a precise mathematical way. 

In particular, if we assume that the solution of the set of ordinary dif

ferential equations lies within a closed and bounded region, R, of n-space, 

the rate at which this ball disperses throughout the region R is one mea

sure of its predictability. If the geometry of the ball is unchanged, the rate 

of dispersion vanishes and the system is perfectly predictable. If the set of 
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equations is linear, the functions f are well behaved in some sense, and there 

is no additive noise, then the rate of dispersion is zero and the system is 

predictable. 

When there is a meaningful invariant measure on R, it may be used to 

describe the rate of dispersion. Ergodic theory provides an extensive basis 

for such analysis. 

Abarbanel et al. (1990) show that a toy model of climate, the Lorenz 

27-variable model, generates values of the surface air temperature that are 

indistinguishable from normally distributed random variates both about the 

mean and even in the tails of the distribution after integration of several 

thousand model years at 6-hour time steps. Long surface air temperature 

records (up to 318 years) show similar properties once a linear trend has been 

removed. The values of temperature are indistinguishable from normally 

distributed random variables both about the mean and for extreme values. 

These results could suggest that the deterministic system generated by 

the Lorenz 27-variable model is closely correlated to a function of a Bernoulli 

shift. This might indicate that the Lorenz 27-variable model may be factored 

into simple components, one of which is a function of the Bernoulli shift. The 

Lorenz 27-variable model data also has a finite dimension, so it is distinguish

able from "noise." 

In terms of predictability, these observations indicate that the rate of 

dispersion of a ball for the model system and for the observed data is at 

an extreme where every disk undergoes a uniform and complete dispersion 

at a known rate, the entropy. If climate, in the absence of external forcing, 

approximates some complex function of a Bernoulli shift, then the prospects 
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for long-term prediction are dim. Obviously these questions need serious 

study. 

The physical dimensions of the region R in n-space are roughly deter

mined by the conservation equations associated with the system of equations 

for y (Abarbanel et al. 1990). For a system based on a function of a Bernoulli 

shift, the dispersion in time of the initial ball will proceed out to the bound

aries of R. The extreme values reached by the variables y are bounded by the 

boundaries of R. In a "true" random variable that is normally distributed, 

the extremes are unbounded, growing as (log k)l where k is the number of 

time steps. Both in the extreme values and in the manner in which the region 

R is populated, a physical system will differ from a "truly random" process. 

This is the case even when the physical dynamics is driven by an embedded 

Bernoulli shift. In practical random number generators, deviations from true 

randomness are set by recurrence times due to the finite state size of the 

Finally we note that the Bernoulli shift involves stretching and back fold

ing of the unit internal under the action of u(y). This mapping is closely 

related to another example, the Smale horseshoe, which is a hyperbolic limit 

set that has been a principal motivating force in the development of modem 

dynamical systems. A horseshoe arises whenever the system has transverse 

homoclinic orbits. These close analogues may be of use in untangling the 

underlying dynamical complexities of the Lorenz 27-variable system. 
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3 CONVENTIONAL VIEWS WITH RESPECT 
TO CLIMATE FORECASTING 

A commonly held view within the modeling community is that there is a 

sharp distinction between the fast elements of the atmosphere-ocean system 

and the slow elements (Hasselmann, 1976). The slow elements, ocean cir

culations, are altered by the fast components, atmospheric weather systems, 

which in tum are altered by the slow components. These interactions give 

rise to a variance that is sometimes described as natural variability. Opti

mistic predictors acknowledge that the fast components are chaotic but claim 

the slow components are not, despite the interactions betw~n fast and slow. 

Just as a matter of principle, this cannot be true in a coupled system. 

The supporters of predictability recognize that the larger horizontal scales 

of the atmosphere require that the atmosphere as a whole be treated as 

chaotic. The eddies and gyres in the ocean ha.ve a much smaller spatial scale 

(100 km) than weather systems in the atmosphere. While the gyres and asso

ciated structure are chaotic, the large-scale features of ocean circulation are 

considered to be non-chaotic and predictable. The predictability of this slow 

component of the ocean leads to the conclusion that the climate system as a 

whole is predictable. Certain features of atmospheric climate show cyclical 

behavior, again suggesting predictability. These include the seasonal fluctu

ations of temperature over continental size areas, the seasonal development 

of the monsoons, etc. 

These observations lead to the common assumption used in climate pre

diction that the ocean-atmosphere system is in balance with the forcing. 
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Variations in insolation give rise to a seasonal forcing leading to the conti

nental seasons and the monsoons. The slow orbital variations in insolation 

of the past lead to a smooth atmospheric response and to the ice ages. The 

slow ocean motions are similarly taken as an external forcing that leads to 

smooth and thus predictable changes in climate. As long as the forcing 

changes slowly, the mean state of the climate system is stable, and if there 

is a change in forcing, the mean state will change until it is in balance with 

the forcing. In particular, as the composition of the atmosphere changes as a 

result of society activities, the radiative forcing changes slowly and the mean 

state of the atmosphere responds. On the basis of these considerations, many 

in the modeling community believe that long-term, fine- grained resolution 

predictability can be achieved. 
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4 A SKEPTICAL VIEW OF CLIMATE FORE
CASTING 

The real issue of predictability is whether the atmosphere-ocean systems 

constitutes a chaotic dynamical system at all time scales, whatever spatial fil

tering may be applied. The conventional view holds that it is chaotic in the 

fast atmospheric motions, but that the slow elements of ocean circulation are 

not. Chaotic dynamical systems can develop very long-term aperiodic fluc

tuations with time scales much longer than any of the obvious time constants 

which appear in the governing laws. In fact, periods of virtually any length 

could occur even if the atmosphere-ocean system experiences no change in 

the external forcing. While the effect of a change in external forcing may be 

predictable, this change will be superposed on the internal fluctuations. The 

externally forced changes may be predictable, while the internal fluctuations 

are not. 

In this context it is important to 'iistinguish external forcing from "inter

nal" forcing. Changes in solar constant are external, but changes in long-term 

ocean circulation are internal to the atmosphere-ocean system and cannot be 

assumed to be independent from the rest of the system. This interconnection 

follows directly from the nonlinear nature of the governing equations. 

In a related report (Abarbanel et aI., 1990), we present an analysis of a 

long (134 years) globt: t annual average surface air temperature record, which 

indicates chaotic behavior at all time scales represented in the record. If a 

linear trend, possibly due to greenhouse forcing, is removed from the record, 

the residuals show a normal distribution both about the mean and in the 

tails of the distribution. The fact that the extremes are consistent with the 
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assumption that the statistical distribution is normal suggest that even at low 

frequencies the behavior is chaotic. The power spectrum strongly peaks at 

the low frequencies. The high-amplitude, low-frequency variations carry the 

shorter period fluctuations up and down and thus go far toward determining 

the range - the difference between maximum and minimum temperature 

- of the distribution. Similarly, the Lorenz 27-variable model of climate 

(Abarbanel et al., 1990) shows chaotic behavior at low frequencies with both 

extreme values and those near the mean exhibiting behavior indistinguishable 

from that of a sample drawn from a normal population (see Section 2). 

While the above arguments do not prove that the atmosphere-ocean sys

tem is chaotic at all time scales, they do strongly imply that the issue needs 

further investigation. Extremely long (1000 years or more) runs of coupled 

atmosphere-ocean models are required to study the issue of whether the sys

tem exhibits chaotic behavior at all time scales of interest to considerations 

of climate. Similarly long runs of the atmosphere alone are needed to deter

mine the time scales over which uncoupled atmospheric motion is chaotic. 

For example, the Lorenz 27-variable model shows long-period internal fluctu

ations associated with long-term variations in albedo due to shifts in average 

cloud cover even though there is no ocean circulation in the model. 
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5 REDUCING THE DIMENSION OF THE 
ATTRACTOR BY AVERAGING 

The criteria for predictability given in (2-1) can be translated into a 

statement about the correlation function on some type of dynamical attractor 

for the system. If we consider only the effects of time averaging, the variance 

of t (see Equation (2-1» is 

var [t] = :2 J J (E[T(t')T(t")] - E[t'] E[t"]) dt'dt". (5 -1) 

If the process is taken to be stationary (a strong assumption) and ergodic, the 

ensemble average (denoted by E) can be replaced by time average, yielding 

var [t] = :2 J J dt'dt" J eiw(t'-t") Sew) dw (5 - 2) 

where Sew) is the spectral density of the field T. This yields 

var [T] = J (Sin ~~ T) r Sew) dw, (5 -3) 

where the first factor in the integral acts as a low-pass filter, weighting all 

parts of the spectrum below T-1• Equation (5-3) implies that predictability, 

free from chaos, requires that the averaging in time, determined by T, be 

sufficiently long that no significant power remains after the filtering. 

From Equation (5-3) we note the importance of the low-frequency com

ponents in determining predictability. If these components are chaotic, then 

long-term prediction is impossible although short-term prediction using the 

methods of nonlinear dynamics may be feasible (Abarbanel, 1990). Climate 

records, as well as most geophysical records, show strong red noise. Figure 1 

shows a reconstruction of the global annual average surface temperature de

rived from observations at land stations (Hansen and Lebedeff, 1987, 1988). 
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Flgure 1. Variation of global annual average surface air temperature (HanSen and 
lebedeff. 1987. 1988). The solid curve is a five-year moving average. 
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The power spectrum (normalized to unit variance) is shown in Figure 2. The 

power drops rapidly from zero frequency to a first minimum at 0.04 cpyr. A 

second global annual average surface air temperature record is shown in Fig

ure 3 (Jones 1988, and personal communication, 1990). The data for Figure 

3 include observations made at sea by vessels as well as land-based obser

vations. The power spectrum for the record given in Figure 3 is shown in 

Figure 4. Again there is a peak at zero frequency but the drop-off at higher 

frequencies is not quite as sharp as that shown in Figure 2. 

The irregularity of the temporal curves and the red noise characteristic of 

the power spectrum exhibited by data records show clearly in simple models 

of the atmosphere. Lorenz (1984b) has developed a low-order model in 27 

variables. The physical variables include the mixing ratios of water vapor 

and liquid water as well as the air surface temperature, ocean surface tem

perature, pressure and the usual dynamical variables. In Lorenz's model, the 

ocean and atmosphere exchange heat and water through evaporation and 

precipitation. The model also produces clouds, which reflect incoming solar 

radiation, while both phases of water absorb and re-emit infrared radiation. 

Figure 5 shows a series of snapshots of surface air temperature at one-year 

intervals for lOOO-years. The power spectrum for the 1000 year Lorenz record 

is shown in Figure 6. The first minimum in the spectrum is at 0.04 cpyr but 

the spectrum continues to drop to 0.1 cpyr before entering the flatter spectral 

region. 

The strong low-frequency peaks exhibited by data sets and model runs 

imply from (5-3) that the variance for l' will be large. Since there is energy 

in the records up to the length of the record we cannot use averages to totally 

eliminate chaotic noise if the low-frequency peaks represent chaos. Sections 2 

and 4 describe one line of evidence, statistics of extremes, that suggests that 
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Figure 6. Power spectrum for the l,OOO-year temperature record shown in Figure 5. 
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the low-frequency region is chaotic. H we cannot obtain long enough time 

averages to eliminate chaos, we might be able to average over long enough 

time to reduce the dimension of the attractor governing the dynamic system. 

As noted above, there are emerging techniques for short-range predictions 

based on the fact that low-dimensional systems can be reconstructed and 

integrated forward in time deterministically. This procedure would allow 

prediction up to a time characaterized by the inverse of the largest Lyapunov 

exponent. While prediction in the long term may not be possible, prediction 

in the short term may be. 

In order to test the hypothesis that averaging reduces the dimension of 

the attractor we use a record generated by the Lorenz 27-variable model 

(see Figures 5 and 6). Ten thousands years of monthly averaged surface air 

temperature were used to obtain the correlation dimensions of the attractor. 

The dimension for the original record without filtering is 6.8. The record 

was then low-pass filtered at 0.08, 0.06, 0.04 and 0.02 cpyr, corresponding 

to longer and longer averaging times. The results are displayed in Figure 7. 

The dimension drops approximately linearly with the filter cutoff frequency, 

reaching a value of 3.35 for a record containing energy below 0.02 cpyr. 

The short length of the observed data records we have examined makes it 

impossible to estimate either the dimensions of either the original data sets 

or filtered versions of these data sets. 
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6 EXAMPLES OF FILTERED SERIES 

6.1 Introduction 

In order to facilitate comparison among series, we have used a uniform 

cutoff frequency of 0.04 cpyr. H the data sets contain a linear trend, the 

trend as determined by a least squares fit is first removed from the record. 

This means that the low-frequency content of the record has been broken 

into two parts: the linear trend and the low-frequency part of the residual. 

We first discuss data sets in Section 6.2 and then model results in Section 

6.3. After summarizing the analysis in Section 6.4, an alternate form repre

senting the results is described in Section 6.5. The alternate representation 

is one of approximate phase plots in which the average rate of change of 

temperature is plotted against the average temperature. 

6.2 Data Sets 

The low-frequency components of the Hansen-Lebedeff temperature record 

(see Figure 1) are given in Figure 8. The residual "noise" obtained after re

moval of the low- frequency components and a linear trend is shown in Figure 

9. The peak to peak variability in the smoothed curve (Figure 8) is about 

0.350 compared with about 0.40 peak to peak in the residuals. Clearly the 

Jow-frequency wave can carry the higher-frequency components up and down 

to give a high total peak to peak variation in the unfiltered record. 
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figure 8. The low-frequency components « 0.04 cpyr) of the global annual average 
surface air temperature from Hansen and LebedefT (see Figure 1). 
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removing the low-frequency variations (Figure 8) and a linear trend from the 
record shown in Figure l. 
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An important issue is whether the low frequency components represent 

chaotic "noise" or whether they represent low frequency processess with well 

defined time scales, possibly of oceanic origin. The data available are insuffi

cient to provide an answer though the arguments summarized above on the 

statistical distribution of the data favor the chaotic noise hypothesis. 

Similar presentations of the data for the Jones global, annual average 

surface air temperature sets (see Figure 3) are shown in Figures 10 and 11. 

The low frequency variations show great similarity to those observed in the 

Hansen-Lebedeff series (see Figure 8). Figure 12 shows the high degree of 

correlation between the low frequency components of the Hansen-Lebedeff 

series and the Jonef1 series over the peirod of overlap of the records, 1880-

1987. The high correlation is perhaps surprising in that there is only a partial 

overlap in the data sets. Only the data derived from land-based meterological 

stations are present in both data sets; the Jones data set relies heavily on 

ocean observations. 

Given the large amplitude of the low frequency variation, at least a par

tial prediction of future global surface air temperature is possible. The low 

frequency components can be extrapolated, for example, using the Fourier 

expansion of the observed data and adding the linear trend of 0.55°C / century. 

This procedure provide the basis for forecasting the future low frequency vari

ability to which must be added the high frequency "noise" which must be 

dealt with statistically. The observed data suggest that in the next few years, 

the low frequency variation will act, in part, to reduce the linear increasing 

trend though the actual temperatures reached in any individual year will be 

dependent on the high frequency noise. 

As our final data set we use the longest surface air temperature record 
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communication. 1990). (See Figu~ 3.) 
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figure 11. The residual temperature variations obtained after removing the low-frequency 
components (Figure 10) and a linear trend from the global annual average 
surface air temperature record given in Figure 3. 
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available to US; the temperature record compiled by Manley (1974) for Cen

tral England. This record differs from the Jones and Hansen-Lebedeff records 

in that it is in effect a single station. Manley (1974) pieced together the early 

part of the series from notebooks kept by amateur observers in various parts 

of England and Scotland. Making different corrections for station location, 

Manley constructed a single record that represents of Central England over 

three centuries. Figure 13 shows the Manley record with its high level of 

noise. The power spectrum for the Manly record is shown in Figure 14, 

and clearly, there is less energy in the low-frequency components than in 

the global average temperature records (see Figure 2 and 4). The spatial 

averaging used in obtaining global averages reduces the high-frequency con

tent of the resulting records and raises the low frequency components. The 

low-frequency part of the Manley record is displayed in Figure 15 and the 

residuals obtained after the removal of the low-frequencies and a linear trend 

is shown in Figure 16. Again the issue is whether this long term variability 

is due to chaotic motion or to predictable long-term changes in ocean cir

culation. Of particular interest in Figure 15 is the strong minimum in the 

temperature curve between 1690 and 1700. This period was the minimum in 

temperatures during the Little Ice Age. A long-tenn swing downward car

ried the high frequency variations into an extended period of cold weather, 

leading to the disastrous climate conditions that devastated all of Northern 

Europe in the late 1600s. The peak to peak variations in the low-frequency 

variations are somewhat greater than ~C, while the high-frequency noise 

terms have peak to peak amplitude greater than 3°C. These are a factor of 

6 to 7 greater than the global average records. 
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of comparison with Figures 2 and 4. 
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curve for Central England (see Figure 13). 
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terms (see Figure 15) and a linear trend from the Manley temperature record 
shown in Figure 13. 
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6.3 Model Results 

The low· frequency variations of the Lorenz 27·variable model (see Figures 

5 and 6) are shown in Figure 17. In this case there can be no question that 

the long· term fluctuations illustrated by Figure 17 are of chaotic origin. The 

model contains a "swamp" representation of the ocean. The ocean responds 

to temperature changes by varying rates of evaporation and liquid water 

returns to the ocean through precipitation. There is no circulation within 

the ocean; therefore, "predictable" long-term ocean·driven changes are ruled 

out. If any 100·year section of Figure 17 is compared with the low frequency 

variations shown by global average surface temperature (Figures 10 and 12), 

there is a close resemblance except that the peak to peak amplitude in the 

model is significantly greater than in the global average data record. This 

differences arises, in part, from the fact that the Lorenz model temperatures 

correspond to a station value (see Figure 15) rather than to spatially averaged 

values. In that way they are more like the Manley records. 

The residual variations in temperature after removing the low· frequency 

components (Figure 17) from the Lorenz 27·variable model (see Figure 5) 

are displayed in Figure 18. The high·frequency chaotic noise resembles white 

motion and shows a peak to peak amplitude of 1.3°C, less than the peak to 

peak amplitude of the low· frequency components. 

6.4 Summary of Data Record and Model Runs 

Both the data sets and the model runs show high· amplitude low· frequency 

variations. Among the data sets, the globally averaged records show a higher 

fraction of the variance in the low· frequencies than in a record from a single 

33 



1 

O.B~ 

0.6 I-

0.4 ~ 
6 
0 

~ 0.2 ~ 

J ! 
! 

Ii E O~ 

~ 

-0.2 

-0.4 

-0.6 ~ 

-O.B I I I I 

0 200 400 600 BOO 

Time (Years) 
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location (Manley temperature record). The Lorenz 27-variable model con

tains a larger fraction of the total variance in the low frequency components. 

In the Lorenz case, all the variance is due to chaotic noise. The observational 

data sets are, of course, contaminated by observational evolution. This con

taminating noise in the observational data may have the effect of raising 

the high-frequency part of the spectrum. This kind of contamination has 

certainly affected the Manley record (see Figure 13). 

A summary of the distribution of variance among the various components 

is shown in Table 1. For the global a\'erage surface air temperature the low

frequency components (linear trend and variations below 0.04 cpyr) contain 

about 50% of the variance. In the model results, 72% of the \'ariance is in 

the low-frequency fluctuations, and these fluctuations are of chaotic origin. 

6.5 Phase Plot Representation of Low-Frequency Com
ponents in Data Sets and Model Runs 

The number of values in the observed data sets discussed above is much 

too small to obtain a reliable estimate of the fractal or of the correlation di-

mension of the attractor, if one exists. An alternative scheme is to examine 

the eigenvalue structure of the correlation matrix under various assumptions 

as to the embedding dimension and in this way obtain an estimate of the 

attractor dimension. The procedure is illustrated in Figure 19, where the 

magnitudes of the eigenvalues for the Hansen-Lebedefl' temperature curve 

filtered at 0.04 cpyr (see Figure 8) are shown for embedding dimension 5, 10 

and 20. For embedding dimensions 5, one or possibly two eigenvalues dom

inate, while for embedding dimension 20, the first three eigenvalues appear 

dominant, suggesting an attractor with dimension of about three. 
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Table 1 
Distribution of Variance in Temperature Records 

Percentage of Veriance In 

Slopes of 
various Components 

Length Trend Low Frequency High Frequency 
Record (Years) ( °C/Century) UnearTrend «0.04 cpyr) (>0.04 cpyr) 

Hansen·Lebedeff 
(see Figure 1) 108 0.55 37.3 10.7 52.0 

Jones 
(see Figure 3) 134 0.28 30.3 17.6 52.1 

Manley 
(see Figure 13) 318 0.19 7.1 28.2 64.7 

Lorenz Model 
(see Figure 5) 1000 72.2 27.8 
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Figure 19. Eigenvalues for the correlation matrix of the Han.sen-Lebedeff temperature 
curve (Figure 1) filtered at 0.04 c:pyr (see Figure 8) at embedding dimensions 
5. 10 and 20. 
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The structure of the eigenvectors of the correlation matrix shows that 

the first principal component for embedding dimension 5 corresponds to a 

running average of five values, while the second principal component corre

sponds to the running difference across the five values. A plot of the filtered 

temperature curve in the plane defined by the first two principal component 

axes is then basically a phase plot of the change in temperature graphed 

against the temperature. Figure 20 shows the phase plot for the 108 year 

long Hansen-Lebedeff temperature curve. The cusps in the curve undoubt

edly represent the fact that two dimensions are insufficient to capture the 

full structure of the three- dimensional motion. 

The above procedure can be tested by examining the Lorenz 27-variable 

surface air temperature model. The correlation dimension for the model run 

filtered at 0.04 cpyr is about 4 (see Figure 7). The eigenvalue structure for 

the correlation matrix of the Lorenz 27 -variable model is given in Figure 

21. The first four eigenvalues dominate for embedding dimension 20, leading 

to an estimated attractor dimension of 4 in agreement with the estimated 

correlation dimension. The phase plot for the filtered (at 0.04 cpyr) Lorenz 

27 -variable surface air temperature record is given in Figure 22. The phase 

plot (for 300 years) shows considerably more structure than the Hansen

Lebedeff curve, which is not unexpected given the higher fraction of the total 

variance in the low-frequency region of the model as contrasted to the data 

(see Table 1). Further filtering of the data to 0.02 cpyr simplifies the phase 

plot considerably (see Figure 23). Whether conventional or newer nonlinear 

dynamics methods of prediction could be 'applied to these representations 

remain to be tested. 

Figure 24 shows a phase plot of normally distributed random noise filtered 

at 0.04 cpyr. The similarity between the phase plot for low-frequency noise 
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figure 21. Eigenvalue for the correlation matrix at various embedding dimensions for the 
Lormz 27-variable model of surface air temperature filtered at 0.04 cpyr. The 
correlation dimension for such a record is 4 (see Figure 7). 
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and that for the Lorenz 27-variable attractor is not surprising, since the values 

generated by the Lorenz 27-variable model for surface air temperature closely 

approximate those of a normally distributed random variable (see Sections 2 

and 4). 

The eigenvalue structure for the Manley temperature record (318 years) 

filtered at 0.04 cpyr is displayed in Figure 25. It would appear that four 

and possibly five eigenvalues are significant so that four-five dimensions are 

required to depict the attractor. The phase plot for the Manley record (see 

Figure 24) show a complex structure similar to that of the Lorenz 27-variable 

model (see Figure 21). Whether the Maniey record at low frequency repre

sents chaotic motion or an underlying predictable signal remains an unan

swered question. 
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7 SUMMARY COMMENTS 

The question as to the origin of the low-frequency components in climate 

records - chaotic motion or predictable fluctuations - remains open. Statis

tical analyses of data sets and of low-order climate models strongly suggest 

that the low-frequency components are chaotic, but this hypothesis has not 

been tested on Global Circulation Models. Such tests are essential if progress 

is to be made with respect to the question: Is climate predictable? 

The theory of prediction for low-order dynamical systems is still in its in

fancy, but may have important applicability to the problems of short-term cli

mate prediction. Developments in the field of nonlinear predictability should 

be closely watched since this is a rapidly growing area of nonlinear dynamics. 

We have emphasized the reduction of the attractor dimension by averag

ing in order to increase the prospects for prediction. The results obtained 

from long runs of GCMs should be tested along the lines described in this 

report in order to investigate the extent to which climate is predictable. 

Our report deals only with temporal averaging. Many of the questions 

raised by examining temporal averaging are relevant to the question of spatial 

averaging. The issues need to be investigated in three-dimensional models 

to better define the length scales over which prediction is possible. 
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