
Persistence in Climate 

G. MacDonald 

..... 
• ' ! 

• 
. ' .... 

(\ -\ 
February 1992 

JSR-91-340 

Approved for publie release; distribution unlimited 

nus report was prepared as an account of work sponsored by an agency of the United States Government Neither the 
Unrted States Government nor any agency thereof. nor any of their employees. makes any warranty. express or tmplled, 
or assumes any legal liability or responsibility for the accuracy. completeness. or usefulness of any information. 
apparatus. product. or process disclosed. or represents that its use would not mfringe pnvately owned rights. Reference 
herem to any speafie cornmeraal product. process, or service by trade name, trademark, manufacturer. or othelWlse. 
does not necessarily constitute or imply its endorsement, recornmendation. or favoring by the United States 
Government or any agency thereof The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the Uruted States Government or any agency thereof 

JASON 
The MITRE Corporation 

7525 Coishire Drive 
McLean. Vtrginia 22102·3481 

(703) 883·6997 

'.1-··· 

i· ... 



REPORT DOCUMENTATION PAGE 
Fonn AptNoved 

OMI No. 0704-0'18 

Publ'C r...,nt"9l1UnMtI fOf th" (OUe<'ttO" of ,,,formatiOft t\ ftc,mated to '",.f. I ~\I' Dtf fflOOnte. u'\<.\\MJ\nq t"'~ tt ..... 0' '~~1"9 1",INctlont. ware"u", •• 1'11"'9 data lOUIe 
"-'''9 ..... -"'.'"'''9 tM oat. neeOecI. INI CO"'DI~'''9 INI ''''''''''''9 ,~. collect,on ot .ntor"'""011 SeNl cO"' ...... 1I ':?",dl"9 '~ot IN,.,.., """'",. or Iny Otlle< "-<t Of ,: 
cOl~ of ".t __ . 'lICIudl"9 "'99"'- for ,eo"""9"oo, IN,_. '0 W..,.,nqIOft ".IdQ ... "~ ~IC". OorectO'.'. or Info''''.,_ o-.'_.NI R-. IllS J'" 
0 ..... HIOJ .... a¥. 5 ... ,. 1104. A,hl\9tOll. VA 1110l-4)Ol .• NI '0 , ... Off'ce of "".nlqern .. ", ..... Budq4!t. P._oro RodU(1,on "O,ftt (0704-4111'. W.""I\9ton. t''= 2050) ..,..,. 

1. AGENCY USE ONLY (L •• .,. bI.nk) f 2. REPORT OATE 
February 1992 

J 3. REPORT TYPE ANO DATES COVERED 
Technical 

•. TITLE AND SUBTITLE S. FUNDING NUMBERS 

Persistence in Climate 
PR- 8503Z 

6. AUTHOR(S) 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 
The MIfRE Corporation REPORT NUMBER 

JASON Program Office, A020 JSR-91-340 
7525 Colshire Drive 
McLean, Virginia 22102-3481 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING 
AGENCY REPORT NUMBER 

U.S. Department of Energy 
Office of Energy Research, ER-30 JSR-91-340 
Washington, DC 20585 

11. SUPPUMENTARY NOTES 

12 •. DISTRIBUTION I AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE 

Distribution unlimited; open for public release. 

13. ABSTRACT (M •• ,mum 100 wordS) 

Persistence in weather forecasting is used to describe runs of several days with similar 
weather characteristics. This general notion of persistence is extended to long term 
records of climate by examining the scaling properties of the range, maximum minus 
minimum, of the integral or sum of observed or calculated variable. The values of 
persistence, P, are limited by existence considerations to -1 ~ P ~ 1. For P = 0, the 
increments making up the sum are uncorrelated, independent variables. Values of P 
near unity represent a tendency for long runs of similar values. Observed global average 
annual temperature records exhibit strong positive persistence even when linear trend is 
removed. A hundred year CCM run (CCM-1) shows vanishing persistence perhaps 
indicating that the real oceans give rise to runs of several years or decades with similar 
climate characteristics while the model ocean fixed by seasonal means does not. 

, •. SUIJECT TERMS 

CCM, persistence, GCM 

H. SiCU.ITV CLASSifICATION ,.. SiCU""'" CLASSifICATION 
OF REPORT OF THIS PAGE 

UNCLASSIFIED UNCLASSIFIED 
NSN 7540·01·180·5')00 

19. S£CU"ITV CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

, S. NUM"~ OF PAGES 

16. PRICE CODE 

20. LIMITATION OF AISTRACT 

SAR 
St.nd.,d Fo,,,, J98 (FI"" 2·89) 
P'-",u • .,..., ~ .,,\1 \fa lJ.· II 
l~.· 101 



Abstract 

Persistence in weather forecasting is used to describe runs of sev
eral days with similar weather characteristics. This general notion of 
persistence is extended to long term records of climate by examining 
the scaling properties of the range, maximum minus minimum, of the 
integral or sum of observed or calculated variable. The values of per
sistence, P, are limited by existence considerations to -I ~ P ~ 1. 
For P = 0, the increments making up the sum are uncorrelated, in
dependent variables. Values of P near unity represent a tendency for 
long runs of similar values. Observed global average annual tempera
ture records exhibit strong positive persistence even when linear trend 
is removed. A hundred year CCM run (CCM-I) shows vanishing per
sistence perhaps indicating that the real oceans give rise to runs of 
several years or decades with similar climate characteristics while the 
model ocean fixed by seasonal means does not. 
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1 INTRODUCTION 

Questions about predictability of climate focus attention on the phe

nomenon of persistence. In meteorology, the term "persistence" is used to 

describe runs of several days with similar weather characteristics. Persistence 

can aid weather forecasting: Under some circumstances today's weather can 

be used to predict tomorrow's. In the case of high frequency weather, per

sistence is associated with the large scale organized motion within the at

mosphere, the nature of which is determined in large measure by the earth's 

rotation. For example, the air mass comprising a high pressure system, with 

anticyclonic circulation, has similar characteristics over the area it covers and 

weather conditions can persist for days as the system moves over a locality. 

Such a system may take several days to pass over a given location in summer, 

while in winter it moves more rapidly. Therefore, in general, predictive skill 

is greater in summer than in winter. 

Does climate show persistence? Are there runs lasting several years 

or more in which similar conditions persist that are different from "mean" 

conditions? Does climate exhibit long term memory so that long term cor

relations in patterns of climate exist? Are long runs of drought recorded in 

Biblical times and in today's California examples of persistence in climate? 

If climate does demonstrate these long term correlations in the form 

of runs, then this persistence may assist long term climate predidion. The 

physical origin for such persistence might be in the longer term organized 

motion of the ocean, where time scales of a thousand years may be expected, 

or in the complexities of nonlinear dynamics of both oceans and atmospheres. 
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While persistence is a familiar term in meteorology there is no quantita

tive definition nor any clear cut way of determining the degree of persistence 

in an observed or calculated time series. Long runs of similar values of a 

parameter describing climate, such as global annual average temperature, 

would reveal themselves as energy in the low frequency bands of the power 

spectrum. In fact, long meteorological (and other geophysical) records typi

cally show abundant energy at low frequencies, often described as red noise. 

This behavior is illustrated in the cumulative spectrum (see Figure 1) of the 

average global temperature calculated from the Lorenz 27-variable model in

tegrated over 26,000 years (see Section 4). About 90 percent of the variance 

lies in the lower 20 percent of the frequency domain. Century long observa

tional temperature records show similar spectra (see Section 5). A current 

GCM with ocean temperatures fixed by seasonal means does not display 

observed low frequency behavior nor persistence (see Sections 5.2 and 5.3). 

Classical time series statistics are weak in describing low frequency be

havior, although the two point correlation function is useful in describing 

short time correlations. Higher order correlations are required to describe 

long term runs, but these quantities are very computationally intensive and 

do not lend themselves to easy graphical presentation or interpretation. 

Power spectra are notorious for their weakness in representing behavior near 

zero frequency. If the mean is removed, the zero value at zero frequency 

pulls down estimates of neighboring frequencies due to the "windowing" as

sociated with the finite length of the record. If the mean is included, the 

delta function at zero frequency pulls up nearby estimates. Any linear trend 

is usually removed prior to taking the spectrum because the low frequency 

content of a trend distorts the estimates of the low frequency part of the 

spectrum. Since the number of "cycles" at periods comparable to the record 
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Figure 1. Cumulative spectrum for a 30.000 year run of the Lorenz 27-variable model of 
climate (see Section 4). 

3 

0.5 



- ~--~--------------

length is small, the statistical reliability of the low frequency estimates is 

based on few samples and is therefore low. 

The low frequency components in a time series can be accentuated by 

filtering. One means of filtering is to integrate or, for equally spaced data, 

to form the cumulative sum. IT f(w) is the estimate of the power spectrum 

at angular frequency w of the observed time series x(t), then f(w)Jw 2 is the 

estimate (except at zero frequency) of the spectrum of the cumulative sum 

X(n) 
n 

X(n) = L x(t). 
t=l 

The summing highlights the low frequency components of x(t) without com

pletely eliminating high frequency terms, as would be the case for low pass 

filtering. In the time domain, long runs of similar values of x(t) will be exhib

ited as nearly monotonic increases or decreases of X(t), while a series with 

less correlation will show a much more ragged wave. As will be shown, a 

measure of the irregularity of the cumulative sum X(n) provides a measure 

of the persistence within the calculated or observed time series x(t). 

In the case where the x(t) are normally distributed and independent, 

with vanishing mean and unit variance, the running sum X(n) can be de

scribed as a classical Brownian process. The increment X (n + k) - X (n) is 

a normal variable with mean 0 and variance k which is independent of X (n) 

and the values X(m) for m < n since x(t) are by assumption uncorrelated. 

In a classical Brownian process, there is no memory of the past. The lack 

of memory is a direct result of the independent nature of x(t). Because x(t) 

are independent, their index of persistence, denoted by P, and which will 

be defined shortly, will vanish. For notational purposes we note that the 
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variance of X(n) scales as n2H where 

H = 1/2 

for a Brownian process. 

At the opposite extreme to a Brownian process with zero persistence 

we consider a process in which the increments of x{t) are a constant random 

number Xl. 

X(t) = Xl 

with E[xd = 0 and E[x~] = 1. The cumulative sum for this process is simply 

X(n) = Xl n 

and the variance of X (n) is given by 

so that the variance scales as n2H where H = 1. For this process persistence 

is perfect, since the run length of identical values equals the length of the 

record. If, in analogy with the correlation coefficient, we assign P = 1 to 

perfect persistence and P = 0 to the absence of persistence, then P is related 

to the scale factor H by 

P = 2 H -1; -1 ~ P ~ 1. 

Negative values of P correspond to antipersistence. 

Hurst (1951), a hydraulic engineer, first introduced the use of cumula

tive sums to analyze long hydrological records by considering the storage of 

water in reservoirs. The amount of water in a reservoir at anyone time is 

determined by the cumulative inflow minus the evaporation and draw down. 

In a managed reservoir, the inflow fluctuates widely but the draw down is 
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more or less constant. Motivated by reservoir considerations, Hurst analyzed 

a number of records using a rescaled range (R/ S) analysis described in detail 

in the following section. Hurst's results were puzzling. Hydrological records 

did not scale according to H = 0.5 or P = ° but showed values of H that 

corresponded to positive values of P. For reservoir height, persistence is un

derstandable, since it depends on rainfall in prior seasons as well as rainfall 

in the current year, and therefore the system has memory. Hurst also found 

H > 1/2 for long temperature records where the origin of "memory" is not 

as clear. 

This paper examines persistence in climate and models of climate. In 

section 3, we describe the theory of process with stationary increment and in

troduce the notion of fractional Brownian motion first studied by Kolmogorov 

(1940) and later by Levy (1953). Such processes have memory and positive 

persistence. A variety of methods to determine P, including Rj S analyses, 

are employed in Section 4 to determine the persistence of long (26,000 years) 

records generated by a low order climate model. The results of applying 

these methods to observational records are discussed in Section 5. 
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2 RESCALED RANGE (RjS) ANALYSIS 
OF INDEPENDENT RANDOM VARI
ABLES 

In order to illustrate Rj S analysis we first consider a series where x( t) 

are mutually independent random variables with a common distribution func

tion. For convenience in calculation, the mean of x(t) is set to zero and the 

values are normalized such that the variance is unity. We form the cumulative 

sums of x(t) in order to bring out the low frequency behavior 

n 

X(n) = L x(t). 
t=1 

Order statistics are more robust than conventional statistical measures. 

To apply order statistics we form the range R(n) by setting 

M(n) - max [O,X(1),X(2), ... ,X(n)] 

m(n) min [O,X(1),X(2), ... ,X(n)] 

and 

R(n) = M(n) - m(n). 

For ease in interpretation it is useful to modify this definition. Suppose that 

the total length of the record is N. Instead of considering the sums X (n), 

we consider instead their deviations from a line drawn joining the origin to 

the point (N, X(N)). Thus we replace the random variables X(n) by 

X*(n) = X(n) - nX(N)jN 

and define the corresponding variables R*(n), M*(n) and m*(n) accordingly. 

The random variable R* (n) will be called the adjusted range of the cumula-

tive sum. 
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In applications, the adjusted sum is to be preferred because it appears 

to have greater sampling stability (it is more robust) and it eliminates a 

trend in case that E[x(t)] -I O. Since the sums X(N) are asymptotically 

normally distributed, the asymptotic distribution of the range is independent 

of the distribution of x(t). Summing not only emphasizes the low frequency 

components of x(t} but also ensures a robust quality to the statistics of X(n), 

such as the range or the adjusted range. 

A straightforward calculation of the range for norma Hy distributed x( t) 

leads to 

E[R(n)] = 2(2n/rr)1/2 

and 

var [R(tt)] = 4n(ln2 - 2/rr) 

(Feller, 1951). The statistics for the adjusted range show the same depen

dence on the length n over which the sum is taken 

E[R*(n)] 

var [R*(n) 

_ (nrr/2)1/2 '" 1.2533 n1/2 

rr2 r 
- (6" - 2) n '" 0.07414 n. 

The result that the range varies as the square root of the length of 

the sum depends critically on the assumption that the variables x( t) are 

independent. If this assumption does not hold, then X (n + 1) depends on 

X (n) , and since X (n) is determined by the previous n values of x( t), X (n + 1) 

depends on x(t), t = L.n. The cumulative sums provide a measure of past 

correlation if the dependence of the range, or the adjusted range, does not 

vary as the square root of the summation interval. 

The quantity R/ S is formed by dividing the adjusted range of X (n) 

by S( n), which is the standard deviation of x( n). For stationary Gaussian 

8 



processes, division by S(n) adds little to the analysis; x(t) can always be 

normalized to have unit variance. However, for nonstationary processes with 

long range dependence, division by S( n) leads to a more stable statistic. 

Based on the above considerations, we can apply R/ S analysis to test 

for correlation in random number generators commonly employed in com

puter packages. The random numbers were generated according to the algo

rithm proposed by Park and Miller (1988), which is under consideration for 

adoption as a IEEE standard. Figure 2 shows a sequence of 8192 normally 

distributed variates supposed to be uncorrelated. The observed distribu

tion (see Figure 3) closely approximates the flormal distribution. Figure 4 

illustrates the cumulative sum of the variables in Figure 2 with the ragged 

curve typical of a Brownian process. The R/ S statistics are obtained by first 

calculating the adjusted range R* for the total record of length N = 8192 and 

normalizing by the standard deviation of the record of length N. The pro

cess is repeated for chunks of record of length N /2, N /4, ... N /1024, and the 

resulting value of the scaled adjusted range, R/S, is obtained by averaging 

over the 2,4, ... 1024 non-overlapping intervals. The smallest interval contains 

eight points. The concept of range begins to break down at small interval 

and chunks smaller than 8 are not used. A plot of the log (R/ S) against 

log (n), where n ;3 the length of the interval over which R/ S is estimated, 

determines the scaling exponent H in the relation 

For the series shown in Figure 2 the scaling slope is 0.51 (see Figure 5). For 

n = 8192, the difference in adjusted range for slopes 0.5 and 0.51 is 11.8, 

while the standard deviation of the estimate of adjusted range is 24.139, so 

that the value 0.51 is not statistically distinct from 0.5. For comparison, 

a slope of 0.6 would produce an adjusted range more than eight standard 
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Figure 2. Time sequence of 8192 normally distributed random variables with zero mean and 
unit variance. 
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Figure 4. Cumulative sums X(t) of x(t) shown in Figure 2. 
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deviations from the expected value for a random independent variable. 

We note that while the range for the cumulative sum of the normally 

distributed independent variables scales with length of observation as n 1/2, 

the range of the elements in the sum x(t) increases far more slowly, essentially 

as (log n )1/2 (Leadbetter et aI., 1980; Abarbanel et a1., 1991). 

A trend introduces a long term persistence into a record, as would a pure 

harmonic, A sin(21r f + <1». We take the frequency f and amplitude A as fixed 

but the phase <I> is taken as random having a uniform distribution. For x( t) 

equal to a sine wave, the range of the cumulative sum X (t) in the limit of 

large n is A/1r f while the limit of the standard deviation is A/2, so that the 

limit of R/ S is 2/1r f. The statistic R/ S for a pure sine wave does not vary 

according to n 1/2, so it shows persistence (actually perfect anti persistence). 

The situation differs in the limit of large n when white Gaussian noise 

of zero mean and unit variance is added to the process 

x(t) == Asin(21rft + <1» + 9(t). 

The cumulative sum X(n) then satisfies the inequality 

G(n) - A/21rf < X(n) < G(n) + A/21rf 

where G(n) is the cumulative sum of the noise 9(t). 

In the limit of large n, the ranges of X (n) and G( n) are identical since 

the range of X (n) varies as n 1/2. The variance of the sine wave plus noise in 

the limit of large n is 

E[S(n)] == 1 + A/2 
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and therefore the statistic R/ S has an expected value for large n of 

( 
2n ) 1/2 

E[R/S]=2 7rf(I+A/2) 

The value of R/ S, as well as the time required to reach the limit, is 

determined by A/27r f. Very low frequency sine waves will lead to persistence 

in the presence of un correlated noise. Lines in the spectrum at low frequencies 

will affect the estimate of R/ S, as will a linear trend. High frequencies will 

not show up in the R/ S statistic. 

The existence of long term correlations can have important consequences. 

For example, the physical model for Brownian motion is one of a small par

ticle being bombarded by molecules in thermal equilibrium. The n 1/2 depen

dence flows from the assumption that the molecules in thermal equilibrium 

have un correlated motions. With vanishing correlation the ordinary diffusion 

equation applies. Statistical independence at large time and/or space scales 

is an essential ingredient of the concept of thermal equilibrium; the exis

tence of longer term correlations would invalidate the assumption of thermal 

equilibrium. 

15 



3 FRACTIONAL BROWNIAN MOTION AND 
PERSISTENCE 

For the moment we return to the cumulative sum of independent, sta-
n 

tionary increments, and form the structure function for X (k), X (k) = LX( t) 

defined by 

D(k) = E[(X(k) - X(0))2] 

where by convention we can set X(O) = O. The structure function for 

X(n + m) is 

t=1 

D(n + m) - E[(X(n + m) - X(O))2] = E[(X(n + m) - X(m))2] 

+ E[(X(m) - X(0))2]. 

But we also have 

E[(X(n + m) - X(m))2] = D(n) 

if the increments are stationary and independent and 

D(n + m) = D(n) + D(m) for n > 0, m > 0 . 

The only possible functional form for the structure function is 

D(n) = en, 

identical to the functional form for the variance of the range described in the 

previous section. 

The spectral density F(w) associated with X(t) is related to the contin

uous structure function D( r) by 

D(r) = 4100 

(1 - cos IN r) F(w) dw . 
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The spectrum of the independent, random increments is a constant 

c 
f(w) = 211"' 

therefore the spectrum of the cumulative sum of independent, random incre-

ments is 
C 

F(w) = -2 2· 
1I"W 

Kolmogorov (1940) generalized the concept of Brownian processes to 

consider structure functions of the form 

D(r) = Cr2H 

with 0 < H < 1. The limits on H come from examining the spectral repre

sentation of D( r). Since from dimensional considerations 

F(w) '" 1/w2H+1 

and since 1 - cos wr varies as w2 near zero frequency, the spectral represen

tation for D( r) exists if 2H + 1 < 3, which fixes the upper limit for H. At 

high frequencies, an ultraviolet catastrophe can only be avoided if H > o. 
These limits on H allow the persistence index P = 2H - 1 to run from -1 to 

1. Since the spectrum for X can be written as 

C 
F{w) = 2H+I' 

W 

the proportionality constant C1 is related to C in the relation for the structure 

function by 

C 

f(2H + 1) sin(2H1I" /2)C 
211" 
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The power law dependence of the structure function implies that D and 

X are self similar. Thus a change in scale in the time variable 

n = hn 

leads to a scale change in X 

X(n) = a(h)X(hn) . 

For classical Brownian motion we have 

a = h- 1/ 2 

or more generally 

a= h- H 

and correspondingly the variance scales as 

var[X(n)] = h2H var [X(hn)] . 

The self similar character of the cumulative sums implies that the "box 

dimension'" of the curve is not unity. The box dimension is determined by 

the relation between the number of boxes required to cover the curve and 

the dimension of the individual boxes. If the length of the record is N, then 

N / hn segments of length hn are needed to cover the time axis. In each 

segment the range of the record is R(hn) = hH R(n) and we need a stack 

of II H R{ n ) / ha boxes of height ha to cover the range. The total number of 

boxes is then 

B(h' a n) = hH R{n) ~ '" hH- 2 '" h-DB 
, , ha hn 

where DB is defined as the box dimension. In terms of the parameter H the 

box dimension is 

DB = 2 - H. 
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The determination of the box dimension for the sequence of random 

variable shown in Figure 2 is illustrated in Figure 6. Here the box dimension 

DB = 1.48, which yiplds an H value of 0.52; this can be compared to the 

value of 0.51 obtained by an R/ S analysis. 

Series with values of the parameter H > 1/2, or P > 0, show persistence; 

that is, the process generating the time series has memory. Levy (1953) 

demonstrated this by showing that for X(t) generated as a Brownian-like 

process, X(t) can be represented as 

1 t 'lH-l 

X(t) = reHtl) Jo (t - S)-2- dW(s) 

where dW(s) is the increment of an ordinary Brownian process (H = 1/2). 

This representation clearly demonstrates the long term memory associated 

with a fractional Brownian process. 

Persistence of a fractional Brownian process can also be shown by ex

amining the correlation properties. In particular, the past increments are 

correlated with future increments. Given the increment X(O) - X( -n) from 

time n to time 0, the probability of having an increment X(n) - X(O) aver

aged over the distribution of past increments is proportional to 

E[(X(O) - X( -n))(X(n) - X(O))]. 

For convenience we choose the origin so that X(O) = O. The correlation 

function of future increments with past increments is then 

C( ) = E[-X( -n)X(n)] 
n E[X(n)2] 

where we have normalized with the variance. The above scaling relations 

E[(X(n) - X(k)2] '" In - kl2H lead to 

C(n) = 22H- 1 
- 1 = 2P 

- 1. 
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Figure 6. Determination of box dimension of the cumulative sum curve shown in 
Figure 4 for a zero mean unit variance random variable having a normal 
distribution Slope = -1.4789. which corresponds to H = 0.5211. 
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The correlation of future increments with past increments vanishes for strict 

Brownian motion. However, for positive persistence, the correlation is posi

tive and independent of the time. This implies an increasing trend in the past 

will produce an increasing trend in the future. In fact, in time limited sys

tems, fractional Brownian motion is an approximate model over some range 

of time scales but not necessarily for the entire record. 

Fractional Brownian motion is illustrated in Figures 7 and 8. In Figure 

7, the curve corresponds to a persistence of 0.8. The long runs of x( t) with 

the same sign show up clearly as nearly straight climbs or descents in the 

cumulative sum X (n). Antipersistence is shown in Figure 8, giving rise to a 

highly ragged curve. 
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Figure 7. Fractional Brownian motion. P = 0.8 
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4 ANALYSIS OF LONG-TIME INTEGRA
TION OF LORENZ 27-VARIABLE MODEL 

4.1 Introduction 

We use values generated by a Lorenz 27-variable model of the atmo

sphere to illustrate the analysis described in Sections 2 and 3. Lorenz (1984) 

formulated a "low order" model of atmospheric change with a goal of explor

ing a "moist" atmosphere. A moist atmosphere contains bulk liquid water 

and water vapor that can form clouds. A shallow ocean provides water for 

evaporation as well as a heat sink or source. Clouds form or dissipate in 

response to changes in relative humidity with consequent changes in albedo 

and the radiative balance. 

In the model, the albedo is proportional to the cloud cover; since freezing 

is excluded from the model there are no changes in albedo due to varying 

snow and ice cover. The cloud cover is parameterized in terms of the relative 

humidity. Locally, the relative humidity drops with higher temperature and 

the albedo decreases, leading to more solar radiation to heat the earth. The 

cloud-albedo feedback allows for significant swings in local and global average 

temperature. 

The radiative and thermodynamic processes that characterize a moist 

atmosphere introduce complicated nonlinear terms into the governing equa

tions. In order to limit the computational complexity, Lorenz {1984} intro

duced a number of simplifying approximations. Lorenz found that for short 
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term integrations the model produced results that qualitatively were in rea

sonable agreement with observed atmospheric behavior and concluded that 

the model was suitable for production runs. Abarbanel et al. (1990) and 

Abarbanel et al. (1991b) investigated the climate of the Lorenz model by 

integrations over several thousand years. We have continued these studies 

using a 25,521 year integration with a 1.25 hour time slip and averaging over 

the year and over the surface of the model to obtain "global" annual average 

temperature. The model does not contain either a seasonal or diurnal cycle. 

An important point to note is that the model contains only one long 

time constant: the thermal time constant for warming the shallow ocean, 

about ten years. The ocean is taken to have ten times the heat capacity of 

the atmosphere. Horizontal heat flow in the ocean is not allowed. Thus there 

is a permanent equator to pole temperature gradient that undergoes small 

fluctuations in response to the poleward transfer of heat by the atmosphere. 

The pole to equator thermal gradient forms a large scale coherent structure 

with a time scale equal to the length of the recofd. 

4.2 Statistics of the Lorenz-27 Model 

The results of a 25,521 year integration of Lorenz-27 for global annual 

average temperature are dirplayed in Figure 9. The temperatures have been 

scaled to unit variance with a standard deviation of 0.364°K (see Table 1). 

The time history of the temperature resembles a white noise process and any 

long term trends or persistence are masked by the irregular short term behav

ior. The histogram for the temperature values is shown in Figure 10. The 

temperature values closely approximate a normal distribution. The skew-

26 



5 

4 

3 

2 

U 
!:E-
CIl 
:; 
iii 
'-
CIl 

0 a. 
E 
~ 

-1 

-2 

-3 

-4 
5,000 10,000 15,000 20,000 25,000 

Time in Years (sd = 0.36 OK) 

Figure 9. Variation in global annual average temperature for a 25,521 year integration of the 
Lorenz 27-variable model. The values are reduced to zero mean and unit variance. 
The standard deviation of the raw temperature record is 0.364 OK. 
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Figure 10. Histogram of the temperature values shown in Figure 9. 

28 



Table 1 

Standard Deviation of Global Annual Average 
Temperature of Long (25,521 years) Integration 

of Lorenz 27-Variable Model 

Interval 
(Years) 

1 - 25,521 
50001 - 15 000 
15001 - 25000 
40003 - 4302 

23401 - 23700 
12374 - 12673 
14001 - 14140 

Standard Deviation 
(Degrees K) 

0.3.64 
0.374 
0.359 
0.270 
0.321 
0.342 
0.341 

ness coefficient is 0.18, which is not significant. The distribution also closely 

approximates a normal distribution in the tails. The range of the tempera

turp in IInits of standard deviation is shown in Figure 11 together with the 

expected value for a variable drawn from a normal population. The auto

correlation function for the temperature record is shown in Figures 12 and 

13. The correlation shows an exponential decay with a first zero at about 

65 years. At longer lags the correlation function shows structure, though the 

paucity of samples for long lags raises question about statistical significance. 

The power spectrum of Lorenz-27 shows abundant energy at low fre

quencies (see Figures 14 and 15). The spectrum shows a number of peaks 

at periods greater than 100 years. The cumulative spectrum (Figure 1) 

establishes that 90 percent of the variance of the record displayed in Fig

ure 9 is contained at frequencies less than 0.1 cycles per year (cpy). For 

periods less than 16 years, the spectrum drops off as /-2.2 (see Figure 16). 
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variable. (Abarbanel et al. 1991a) 
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Figure 14. Power spectrum of the record displayed in Figure 9. The frequency is measured in 
cycles per year (cpy). The units for the power are (0K)2/cpy. 
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Figure 15. The low frequency portion of the power spectrum shown in Figure 14. 
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Figure 16. The high frequency portion of the spectrum given in Figure 14 in a log-log 
representation. The best least squares line fit to the spectrum is f 2 2 suggesting that 
for time scales of 16 years or less. the record given in Figure 9 can be modeled as 
a Brownian motion with independent increments. 
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Thus at high frequencies the record resembles a classical Brownian walk 

derived from white noise. The behavior deviates greatly from this model at 

low frequencies, which contain the bulk of the variance. 

4.3 RjS Analyses of Lorenz-27 Model 

An RIS analysis of the record shown in Figure 9 yields a persistence 

index P = 0.34 for intervals greater than about 20 years (see Figure 17). An 

alternative interpretation of the analysis is shown in Figure 18. In this in

terpretation there are three scales for the variation in temperature. At high 

frequencies, periods smaller than 20 years, the variations can be modeled 

as classical Brownian motion with independent increments. For periods be

tween 20 years and 400 years, the record has high persistence, P = 0.64. At 

still longer intervals (400 years to 25,000 years), the record shows weak per

sistence, P = 0.07. Whatever correlation exists at intermediate time scales 

is lost at long (> 400 years) time scales. 

In terms of the spectrum of the record, in the frequency interval (or

responding to time intervals between 400 and 20 years, the power spectrum 

should drop off as j-p. The observed drop off yields an estimate for P of 

0.71 (see Figure 19) as opposed to the estimate of 0.64 derived from the RIS 

analyses. The spectral estimate of P depends sensitively on the highest fre

quency used in obtaining the slope, since at high frequencies the slope of the 

spectrum is -2.2 (see Figure 16). Persistence is closely tied to the character 

of the spectrum at low frequencies. The higher the fraction of the variance 

that is carried by the low frequencies, the more likely that a record will show 

persistence. In order to distinguish persistence due to low frequency lines in 
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Figure 17. Results of an RIS analysis of the record given in Figure 9. The logarithm of the 
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range WaS estimated. 
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the spectrum from persistence due to a continuous low frequency spectrum 

a much longer record would be required (see Section 2). 

The Lorenz-27 climate model shows three time intervals with differing 

behavior. At high frequencies, the model behaves as an oscillator excited 

by white noise. At an intermittent range of frequencies, the variations in 

global annual average temperature show partial coherence as measured by 

the persistence index. Over these time scales one may be able to make 

predictions about average behavior provided the averages are longer than 20 

years. At still longer periods (greater than 400 years) partial coherence is 

l""q-p y lost and attempts at prediction might be expected to fail. 

4.4 Analysis of Persistence in Short Records 

The estimates of persistence discussed in Section 4.3 were based on the 

analysis of the entire record. In climate studies good global annual average 

temperature are very much limited in length, to about 110 to 140 years, 

though there is a simple station record covering some 300 years (Abarbanel 

et al. 1991 b). Table 2 lists Rj S estimates of persistence for shorter intervals 

of the record. The higher values of persistence shown for randomly selected 

records of length 140 and 300 years are due to persistence for time intervals 

of 20 to 400 years. The shorter records do not sample intervals greater than 

400 years and thus do not pick up the lack of persistence for intervals longer 

than 400 years. 
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Table 2 

Persistence in Lorenz-27 Model as Estimated 
from Intervals of Various Lengths 

Persistence 
Interval Length (Years) All Intervals 20-400 Years 

1 - 25521 25521 0.34 0.64 
5001 - 15000 10000 0.42 0.74 
12374 - 12673 300 0.56 
4003 - 4302 300 0.61 

23401 - 23700 300 0.50 
14001 - 14140 140 0.48 

4.5 Alternative Methods of Estimating Persistence 

The Rj S method of estimating persistence appears robust since it de

pends on use of order statistics (David, 1981; Huber, 1972). Two alternative 

methods to Rj S statistics are the analysis of the variation of the variance 

with length of the interval and the estimation of the box dimension (see 

Section 3). In the variance method, the variance of the cumulative sum is 

calculated for the whole record and then for successive smaller non overlap

ping intervals obtained by repeated halving of the length of the intervals. 

The dependence of the variance on the length of the interval then determines 

P + 1, where P is the persistence index. 

Table 3 provides comparison of various estimate of the index of per

sistence. The Rj S estimate and the estimate of the box dimension of the 

cumulative sum of the record are close. The estimate obtained by examining 

the dependence of the variance on interval length consistently gives a lower 
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Table 3 

Comparison of Various Methods 
of Estimating Persistence 

Record RIS Variance Box Dimension 

Lorenz 1 - 25521 0.34 0.22 0.31 
Lorenz 5001-15000 0.42 0.30 0.44 
Random 1-8192 0.02 -0.02 0.01 

value of P than that provided by RI S analysis or the box dimensions. 

4.6 Comments on Estimating Persistence 

The principal requirement for estimating persistence is a long record. 

As discussed above, the value of P depends on the length of the record, 

particularly if persistence becomes small for intervals longer than some in

terval. The value of P obtained for short records should be viewed with 

caution. The RI S estimate exhibits greater statistical stability than does 

the variance estimate. 
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5 PERSISTENCE IN GLOBAL ANNUAL 
AVERAGE TEMPERATURE 

5.1 Observed Temperature Records 

The record of global annual average temperature prepared by Jones et 

al. (1986 a,b) and brought up to date by Jones (1988) and Jones and \Vigley 

(1990) is shown in Figure 20. The record combines observations taken both 

at land stations and ships at sea. The records are fraught with problems 

related to the homogeneity of land and marine data, but represent the best 

information available. The values earlier than 1890 are undoubtedly less 

reliable than those in subsequent years. 

The temperature time series in Figure 20 shows a trend with warming 

apparent, particularly in the decade of the 1980s. A least squares fit of a 

linear trend provides a slope of O.028°K/year. If the linear trend is removed 

the remaining time series has a histogram that approximates a normal dis

tribution (see Figure 21). The standard deviation for the series including the 

trend is O.17°K; with the trend removed, the standard deviation is 0.13°K. 

The variations of the range of temperature with time provide a meac;ure of 

the nature of the tails of the distribution. As illustrated in Figure 22, the 

observed range approximates the expected value of the range of a normally 

distributed random variable. 

Figure 23 shows the power spectrum of the global annual average tem

perature. The power is concentrated at the lower frequencies with 60 percent 
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figure 20. Global annual average surface temperature after Jones et al. (1986 a,b). 
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Figure 23. Power spectrum of record shown in Figure 20 after removal of a linear trend. 
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Table 4 

Estimates of Persistence Obtained for 
Global Annual Average Temperature Records 

Length Standard Deviation 
Record (Years) (OK) Index of Persistence 

Hansen and 108 0.22 0.88 
Lebedeff (1988) 
saJllP \lI!ith l1n~a!" 108 0.14 0.71 

trend removed 

Jones et al. (1986b) 134 0.17 0.78 
same wi th linear 134 0.13 0.56 

trend removed 

Manley (1974) 318 0.68 0.46 
same wi th linear 318 0.61 0.38 

trend removed 

of the variance frequencies lower than 0.1 cycles per year (see Figure 24). The 

fraction of low frequency variance is less than that displayed in the Lorenz 

model (90 percent), but the observed record certainly contains un correlated 

measurement error that may well reduce the fraction of energy due to low 

frequency natural variability. 

The persistence index obtained from an Rj S analysis of the record 

shown in Figure 20 is 0.78. If the trend is removed the persistence drops 

to 0 56 (see Figure 25). The persistence is comparable to that shown in the 

Lorenz model for short intervals (see Table 2). Table 4 gives the value of 

the persistence as given by R/ S analysis of two other long term temperature 

records. Hansen and Lebedeff (1988) reduced temperature observations for 
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Figure 24. Cumulative spectrum of the time series given in Figure 20. 
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land stations only to obtain a global annual mean surface temperature. The 

Manley (1974) record is pieced together from observations taken at various 

stations in Central England and is the longest available instrumented temper

ature record. All the records show evidence for significant persistence. The 

lower persistence fo:' the Manley record is probably due to the much higher 

noise level associated with a single station and with primitive observations 

during the early part of the record. 

5.2 Persistence in a Global Circulation Model (GCM) 

Through the efforts of Robert Chervin we had available a 101 year run 

of the Community Climate Model-l (CCM-l), a widely used general circula

tion model (GCM). This model contains far greater complexity than does the 

Lorenz 27-variable model. Clouds, topography and snow and ice feedback are 

all included. The oceans exchange heat and moisture with the atmosphere 

but the temperature o{ the ocean varies according to the seasonal climato

logical means. There are '10 ocean currents and, like the Lorenz model, there 

is no horiZ0!ltal heat transport within the ocean. The resulting global annual 

mean for ~ he model is shown in Figure 26. The standard deviation of 0.043°K 

is small compared with the observed records and with the Lorenz model (see 

Table 4). 

The gross statistics of CCM-l arc indicated in Figures 27 and 28. 

About the mean, CCM-l approximates a normally distrib1lted variate but 

the observed range is significantly greater than that expected for a normally 

distributed variate. The power spectrum for the model results differs dra

matically from the observed records and the spectra of the Lorenz model 
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(see Figures 29 and 30). The CCM-l results do not show the red spec

trum characteristic of observed temperature records and exhibited by the 

Lorenz model. In part the difference arises from the treatment of the oceans. 

The energetics of the ocean determines the "slow" physics. The prescrip

tion of the boundary condition over the ocean as the climatological mean 

ensures that the model reproduces seasonal fluctuations approximately cor

rectly. The CCM-I representation does not exhibit longer term and higher 

amplitude fluctuations seen in nature. Since the ultimate goal of models is to 

"predict" long term changes of climate flowing from anthropogenic composi

tional changes, the lack of faithful representation of slow changes is a major 

deficiency. 

The !OI-year run of CCM-l shows a persistence index between 0.1 and 

0.2 depending on the method used to estimate persistence. These low values 

and the shortness of the record raise questions as to whether the estimated 

persistence is statistically significant. 

5.3 Concluding Observations 

The analysis presented above illustrates the usefulness of having a single 

number P, the index of persistence, characterize the long term behavior of 

a time series. The existence of a large positive value of P over a range of 

time scales indicates that predictability is possible in the sense that runs 

or trends are likely to be preserved over these time intervals. Long term 

trends such as that due to changing atmospheric composition give rise to 

persistence. Sharp lines in the low frequency part of the spectrurt also result 

in persistence. On short time scales, persistence is due to the existence of 
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Figure 29. Power spectrum for the global annual average surface temperature shown in 
Figure 26 
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Figure 26 
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large coherent structures in the atmosphere. In the case of climate, large scale 

coherent structures in the ocean may give rise to persistence over decades or 

longer. 

The analysis of observed global annual average temperature records 

shows that these records have a strong persistence. While the records are 

short, only about a century, the persistence is highly statistically significant. 

The analysis of one GeM record of 101 years does not show persistence or 

a strong red spectrum and thus differs significantly from the observed global 

annual average temperature records. The lack of energy at low frequencies is 

most probably due to a failure to deal with the oceans in an adequate way. 
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