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1 EXECUTIVE SUMMARY

1.1 Overview of the Study

JASON was asked to assess U.S. capabilities for estimating greenhouse gas

(GHG) emissions in support of monitoring international agreements. In par-

ticular, JASON was asked:

• What are the current and future capabilities for estimating GHG emis-

sions using direct measurements of GHG atmospheric concentrations?

• How do direct measurements compare to indirect (“proxy”) methods

for monitoring emissions?

• What are the capabilities for estimating emissions from non-cooperating

countries i.e. those for which access to in-country measurements is im-

peded or denied?

The measurement of GHGs is a large and complex technical area. Our study

focused primarily on measurement of the most prominent anthropogenic

GHG component, atmospheric CO2 arising from fossil fuel emissions. The

study included the following as primary topics of investigation:

• Direct measurements of atmospheric CO2, including remote observa-

tions via satellite and in situ measurements using land, air, or ocean-

going samplers. The sub-topics included:

– Modeling, data assimilation, and inversion needed to derive CO2

fluxes from measured CO2 concentrations, and to optimize mea-

surement strategies.

– Isotopic measurements using both stable and unstable isotopes.

• Energy infrastructure (proxy) data as an alternative or supplement to

direct measurements.
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The primary conclusions of our study are: (1) energy infrastructure monitor-

ing provides a near-term capability for assessing a country’s CO2 emissions

from fossil-fuel burning, and (2) direct measurements (including the required

modeling of GHG transport in the atmosphere) will take additional develop-

ment before they are capable of estimating emissions of GHGs at accuracies

that are useful for supporting the monitoring of international agreements.

1.2 Direct Measurements

Background

The relevant quantities that can be measured directly are CO2 concentrations

(mole fraction in parts per million) by in situ observations, or CO2 column

concentrations (weighted mole fraction) looking down at a patch of the Earth

from an orbiting satellite. For the purposes of treaty monitoring, what are

needed are CO2 fluxes (molecules per second) emitted into the atmosphere

due to human activities in an area of interest. Thus the performance of a

measurement system for CO2 emissions (fluxes) depends both on the concen-

tration measurements themselves and on what is called the “model inversion”

to go from the measured concentrations to the derived emissions.

The naturally occurring carbon cycle includes CO2 exchange to and from

the atmosphere by processes in the biosphere, soils, and oceans, as well as

geological processes (e.g. volcanos). Assessment of emissions due to human

activities is difficult because the CO2 emitted by anthropogenic sources is

only a small fraction of the natural emission and absorption processes. A

further challenge is that the transport of the CO2 from its source to the

measurement point is highly dependent on detailed meteorology, i.e. wind

speed, temperature, pressure, and other variables.

Goals of Direct Measurements

As is described in the study report, JASON has chosen ±20% (90% confi-

dence) measurement uncertainty as the initial benchmark by which to eval-
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uate the ability of the U.S. to estimate annual anthropogenic CO2 emission

from a country or region. This benchmark was chosen as a reasonable com-

promise between what is we believe is achievable and what is required for

treaty verification monitoring. The largest GHG emitting nations include:

China, the U.S., Russia, Japan, and India, as well as the European Union as

a region. For some of these, direct measurements at the ±20% level will be

difficult to achieve as it is not only the total emission level that is important,

but also the emission density (i.e. tonnes of CO2 per square kilometer per

year). We suggest starting with the larger emitters: the European Union,

China, and the U.S., with the goal of developing a direct measurement ca-

pability for these at the ±20% level or better.

Assessment of Capabilities: Direct Measurements

• For cooperative countries, the technology currently exists to directly

monitor GHG emissions sufficiently well on an annual basis to support

U.S. decision-making on international agreements. We believe that a

properly designed in-situ sensor network using currently available tech-

nology could reach a ±20% goal if augmented with observations from

existing satellite instruments (e.g., AIRS, GOSAT, and SCIAMACHY)

as well as accurate meteorological data. The capability will be further

improved by a successful launch of the Orbiting Carbon Observatory

(OCO-2) in 2013.

• For non-cooperative countries, there is currently no demonstrated ca-

pability to estimate country-level emissions using direct measurements

of atmospheric CO2 that has sufficient accuracy to support monitoring

of compliance with international agreements.

• It is difficult to predict when direct measurements of CO2 will yield

useful emission estimates for non-cooperating countries. The situation

should improve over the next 3-5 years with data from GOSAT, the

possibility of surface CO2 data from AIRS, and future data from OCO-

2. Coupled with sensor networks optimized to sample downwind of

3



specific countries, the satellite data could provide a capability within 5

years for estimation of annually averaged net fluxes with an accuracy

possibly as good as ±20%.

• Comparing remote with in situ measurements and national inventories

in cooperative countries will be very instructive in deciding whether it is

feasible to monitor noncooperative countries by remote measurements

alone.

• Improved modeling/assimilation/inversion tools will be required to reach

a goal of ±20% for both cooperative and non-cooperative countries.

• On a longer time scale (5-10 years) a GHG observation satellite in

geosynchronous (or other optimized) orbit could provide a significantly

improved capability for estimating GHG emissions from non-cooperating

countries.

• Availability of low-cost CO2 sensors with 1 ppm accuracy will enable

in situ monitoring from large numbers of land, air, and sea platforms.

• Isotopic measurements will be useful as tracers of CO2 from fossil fuel

burning and other processes, though considerable work will be required

to establish quantitative assessments.

1.3 Monitoring Energy Infrastructure
(Proxy Measurements)

Background

As an alternative to measuring CO2 directly, we can monitor the energy in-

frastructure of countries to verify whether claimed actions are being taken

to reduce CO2 emissions (e.g. construction of wind farms, reduced coal con-

sumption, etc.). Further, we can infer the anthropogenic CO2 emission rate.

This is done by monitoring the energy infrastructure, estimating fossil fuel
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consumption, and then estimating CO2 emissions using appropriate emis-

sion factors. We refer to these estimates as “proxy measurements.” Signa-

tures of energy infrastructure include, for instance, imagery of construction

and operation of power plants, oil refineries, and biorefineries, and of fuel

transportation activity. Note that monitoring energy infrastructure does not

provide information on CO2 emission other than fossil fuel consumption and

does not address greenhouse gases other than CO2. It can, however, provide

information on installed capacity using alternative energy sources.

In the context of international agreements, monitoring of energy infrastruc-

ture might include, for example, observations of some of the specific “activi-

ties” described in national documentation submitted to the UN Framework

Convention on Climate Change (UNFCCC). Proxy observations are useful

for informing national policy regardless of the details of the international

agreements that are in force at any given time.

Goals of Energy Infrastructure Monitoring

We propose that a useful goal for energy infrastructure monitoring is to be

able to characterize the balance between carbon intensive and low-carbon

(alternative) energy sources such that the share of the energy from low-

carbon sources can be determined with an accuracy of better than ±20%

(90% confidence). That is, if the share of the energy from low-carbon sources

is actually 25%, the goal of energy infrastructure monitoring should be to

determine this share to be 25±5%.

For quantitatively inferring CO2 emissions from fossil fuel use, we suggest a

goal of better than ±20% (90% confidence), i.e. as least as good as suggested

for direct measurements.

Assessment of Capabilities: Energy Infrastructure Monitoring

• Monitoring of energy infrastructure is an attractive near-term alterna-

tive to direct measurements of GHG concentrations for supporting U.S.

monitoring of international agreements. With existing capabilities, im-
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portant information can be obtained on a country’s use of fossil fuels

and alternative energy sources. Consent is not required to implement

this approach. The approach can be used to monitor and verify actions

agreed to by countries as part of mitigation plans or other aspects of

international agreements.

• Beyond verifying actions, proxy data from energy infrastructure mon-

itoring can quite plausibly be used to make independent estimates of

CO2 emissions from fossil fuel use. However, it is premature to say what

accuracy can be achieved for quantitative estimation of CO2 emissions

using proxy data. Rather, these methods should be assessed by testing

their ability to independently estimate the fossil fuel CO2 emissions

from the U.S., or other cooperating country, for which fossil fuel con-

sumption is well-known via other means.

1.4 Roadmap

We summarize the recommendations from our report in the form of a roadmap

for action by the U.S. government over the next 2-5 years:

• Acquire and maintain a detailed technical knowledge of the energy infras-

tructure of countries with large greenhouse gas emissions, and identify and

observe the signatures needed to quantify their energy use. This effort re-

quires a significant number of technical personnel and will require standing

up of an organization dedicated to this task. This organization should take

a systems approach to deciding which signatures and what spatial and tem-

poral sampling will be most useful in quantification of energy use. It should

also develop a plan for validating its methodologies against ground truth.

• Fund four strands of development that can be brought to technical maturity

within two years:

1. Improved tools and models that provide quantitative estimates of GHG

flux error together with an “error budget” that includes measurement
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error, uncertainties due to finite sampling density, meteorological, and

modeling errors. The tools should also have the capability to support

design and optimization of new networks of remote and in-situ sensors.

2. Capability to carry out experiments with controlled release of tracer

gases to empirically evaluate tools and models.

3. Design-studies of geosynchronous (GEO) satellite concepts brought to

enough maturity that capabilities, feasibility, and cost are known. Non-

GEO high orbit options should also be investigated as alternatives.

4. A “challenge” exercise to develop a $500, 1 ppm CO2 sensor, including

symposia to compete designs and trade ideas for sensor design and

deployment.

• Following these initial steps, perform systems engineering using model-

ing/design tools to optimize a “market basket” of investment in point sensors

and satellites, assessing tradeoffs and synergy between various possible in-

vestments (space vs. in-situ sensors, accuracy vs. density of sampling, etc.).

Continue the maturation of modeling and design tools.
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2 INTRODUCTION

This JASON report assesses methods for the remote determination of green-

house gases, in particular carbon dioxide. Greenhouse gases (GHGs) are

atmospheric gases that are transparent to radiation at one wavelength and

absorb at another, usually longer, wavelength. For GHGs, radiant energy

can be trapped via absorption, affecting the balance between the radiant

energy incident on the earth and that re-radiated back into space. A GHG

gas has a radiative forcing (measured in units of Watt/m2/s) and a related

warming potential. The important anthropogenic GHGs include carbon diox-

ide (CO2), methane (CH4), nitrous oxide (N2O), chlorofluorocarbons(CFCs),

perfluorocarbons (PFCs), and hydrofluorocarbons (HFCs).

Figure 2 shows the growth of CO2 in the atmosphere over time as measured

from Mauna Loa. This is the famous “Keeling” curve [1]. The growth of

the CO2 concentration is anthropogenic in nature and primarily due to the

burning of fossil fuels.

Figure 1: Monthly mean concentration of CO2 measured at Mauna Loa,
Hawaii. SOURCE: Scripps Institute of Oceanography CO2 program [2]
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There are widespread concerns that increased GHG concentrations will have

negative consequences for climate and the environment (c.f. [3]), and these

concerns have been the impetus for international agreements, including the

Kyoto protocols [4] and the more recent Copenhagen accords[5]. Additional

international agreements are likely in the future and monitoring of compli-

ance with these agreements will be important. JASON was therefore asked:

How might measurements of GHGs be used to support monitoring of in-

ternational GHG agreements? What are the technical means that can be

employed for measurements of GHGs? How might the assessment of such

capabilities influence the types of agreements that are entered into? These

questions provided the context of our study.

In general, there are three approaches to assessment of greenhouse gas emis-

sions in the context of monitoring of international agreements:

• Inventories. Validating a country’s self-reported levels of GHG-related

activity, in particular national inventories and national mitigation ac-

tions.

• Indirect or “proxy” methods. Monitoring energy infrastructure

and land-use to indirectly infer GHG emissions.

• Direct measurements. Estimation of greenhouse gas emissions using

direct measurements of GHG concentrations in the atmosphere.

The first two approaches are sometimes called “bottom up” approaches, while

direct measurement is considered a “top down” approach.

2.1 Scope of the JASON Study

JASON was asked to assess U.S. capabilities for estimating greenhouse gas

(GHG) emissions in support of monitoring international agreements. In par-

ticular, JASON was asked:
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• What are the current and future capabilities for estimating GHG emis-

sions using direct measurements of GHG atmospheric concentrations?

• How do direct measurements compare to indirect (“proxy”) methods

for estimating emissions?

• What are the capabilities for estimating emissions from non-cooperating

countries i.e. those for which access to in-country measurements is im-

peded or denied.

The measurement of GHGs is a large and complex technical area. Our study

focused primarily on measurement of the most prominent anthropogenic

GHG component, atmospheric CO2 arising from fossil fuel emissions. The

study included the following as primary topics of investigation:

• Direct measurements of atmospheric CO2, including remote observa-

tions via satellite and in situ measurements using land, air, or ocean-

going samplers. The sub-topics included:

– Modeling, data assimilation, and inversion needed to derive CO2

fluxes from measured CO2 concentrations, and to optimize mea-

surement strategies.

– Isotopic measurements using both stable and unstable isotopes.

• Energy infrastructure (proxy) data as an alternative or supplement to

direct measurements.

Each of these topics is covered in more detail in chapters of this report.

Our study focused primarily on measurement of atmospheric CO2 arising

from fossil fuel emissions. Although we were not able to investigate them

in any significant detail, we recognize the importance of several other topics

such as: GHGs other than CO2, GHGs from natural processes and land-use

change, and gases other than GHG which correlate with fossil fuel burning.
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JASON benefitted significantly from other recent studies on estimation of

GHG emissions. The NRC has carried out an excellent study: Verify-

ing Greenhouse Gas Emissions: Methods to Support International Climate

Agreements, chaired by Stephen Pacala [2]. The study report has three pri-

mary chapters: (1) National Inventories of Greenhouse Gas Emissions, (2)

Measuring Fluxes from Land-Use Sources and Sinks, and (3) Emissions Es-

timated from Atmospheric and Oceanic Measurements. It thus covered all

three of the basic approaches mentioned above. The NRC report contains a

wealth of useful background information as well as useful appendices from

which our JASON study benefitted significantly. We also benefitted from the

recent study by the MEDEA group.

2.2 Greenhouse Gases, CO2, and the Carbon Cycle

We focused our study on methods for measuring CO2 emissions, with par-

ticular emphasis on fossil fuel emissions. Figure 2 shows the estimated im-

portance of various GHGs for long-term warming potential. It indicates that

CO2 is the largest contributer, with CH4 next, then N2O, followed by about

a 1% contribution from other GHGs. Because each GHG has a different

lifetime in the global system, the contribution to the warming potential is

calculated for a specific time scale, 100 years for Figure 2. At shorter time

scales, the relative contributions change; on a 20-year time scale CH4 has

roughly the same importance as CO2.

For our study we chose to concentrate on CO2 from fossil fuel combustion,

the largest contributor to warming potential on a 100-year timescale. While

this was our primary focus, we do recognize the importance of other GHGs,

particularly CH4, and these need to be included in any comprehensive study

of direct measurements of GHGs. Additional discussion can be found in [2].

The fossil fuel CO2 emissions from large countries are often measured in units

of billion metric tonnes per year, or Gt/yr. A billion metric tonnes is 1015

grams, or a petagram (Pg). Emissions are quoted is some cases for CO2

12



Figure 2: Contribution of individual GHG to the 100-year warming potential.
Each GHG has a characteristic lifetime in the atmosphere. Consequently,
warming potential is quoted for a specified time in the future. SOURCE:
Figure 1.1b from [6]

and in some cases for carbon. Often the notation PgC or GtC is used to

indicate carbon emissions, while PtCO2 or GtCO2 indicate CO2 emissions.

The conversion factor is 44/12, the ratio of molecular weight of CO2 to the

atomic weight of the most abundant isotope of carbon.

Although CO2 from fossil fuel burning represents the major contributor to

the long-term GHG warming potential, it is only a small component of the

overall exchange of CO2 between the atmosphere and the land/ocean reser-

voirs. Figure 3 indicates that the global burning of fossil fuels released about

6 Petagrams (Pg) of carbon per year into the atmosphere in the timeframe of

the year 2000. This is to be compared to the much larger exchange between

the ocean and atmosphere of roughly 90 Pg/yr and the exchange of CO2
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between the terrestrial biosphere and the atmosphere of about 120 Pg/yr.

Each of these exchanges has significant natural variability on a wide vari-

ety of both spatial and temporal scales. Thus any attempt to estimate an-

thropogenic CO2 emissions using direct measurements must account for the

significant variability in the natural carbon cycle. This is discussed in more

detail in Section 4 which discusses direct measurements of CO2. Note also

that because the ocean uptake is thought to be larger than the ocean loss, the

growth of CO2 in the atmosphere is less than the input due to anthropogenic

sources. A more complete discussion of the global carbon cycle and natural

sources and sinks of CO2 can be found in [2] and references therein.

Figure 3: The global carbon cycle, showing reservoirs (pools) and fluxes.
SOURCE: The Globe Program, Carbon Cycle Project.
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2.3 Estimating CO2 Emissions from Fossil Fuel Burn-

ing

Existing international agreements (e.g. [4], [5]) are often stated in terms of re-

ductions in CO2 emissions. Monitoring of international agreements therefore

requires estimates of anthropogenic CO2 emissions (or fluxes) from specific

countries or regions. However, the relevant quantities that can be measured

directly are not CO2 emissions but rather CO2 concentrations. Specifically,

these include: (1) in situ measurements of CO2 concentrations (mole fraction

in parts per million) obtained by sampling, and (2) CO2 column concentra-

tions (weighted mole fraction) looking down at a patch of the Earth from an

orbiting satellite. To use measurements of CO2 concentrations to obtain an

estimate of CO2 emissions requires a model for the transport of CO2 from

the source to the measurement point. In particular accurate meteorology is

required, i.e an accurate measurement or model of wind velocity, tempera-

ture, pressure, and other variables. Thus the performance of a measurement

system for CO2 emissions (fluxes) depends both on the concentration mea-

surements themselves and on what is called the “model inversion” to go from

the measured concentrations to the derived emissions. We cannot overempha-

size the importance of transport modeling in estimation of CO2 emissions. In

many cases, modeling uncertainties will dominate measurement uncertainty.

We discuss modeling, data assimilation, and inversion further in Section 5.

As mentioned before, the naturally occurring carbon cycle includes CO2 ex-

change to and from the atmosphere by processes in the biosphere, soils, and

oceans, as well as geophysical processes (e.g. volcanos). Assessment of emis-

sions due to human activities is therefore difficult because the CO2 emitted

by anthropogenic sources is only a small fraction of the natural emission and

absorption processes.

It is useful to estimate the size of the average enhancement in concentration

downwind from an anthropogenic source of CO2. A simplified estimate of

the downstream concentration enhancement is given by (c.f. [2]):
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1
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(
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)−1

×

(
ρcol

3.6× 105 mol/m2

)−1

(2-1)

where Δ is typically given in parts per million (ppm) and Femit is the total

emission from a region of interest having an area A. The dwell time of the

measured air in the emitting region is Tdwell = Lpath/vwind where Lpath is

the path length across the emitting region and vwind is the average wind

speed. Note that (Lpath/A) characterizes the fraction of the total emission,

Femit, that is accessible to the measurement. The total atmospheric column

density, ρcol, is the column density appropriate to the mixing volume or the

measurement column. For an in situ measurement the column is typically

that of the mixed boundary layer i.e. of order 1 km of the lower atmosphere.

For satellite measurements, the column is the total column depth of the

atmosphere.

As can be seen, a typical enhancement is 4 ppm in the boundary layer and

0.4 ppm for a satellite measurement of the enhancement compared to the

total atmospheric column density. Additional estimates of enhancements are

given in the next section. These should be compared to the total CO2 dry

mole fraction of about 400 ppm which can have substantial diurnal, synoptic,

and seasonal variability, much larger than the 0.4 ppm (satellite) and 4 ppm

(in situ) enhancements from anthropogenic sources.
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2.3.1 Country and regional fossil-fuel CO2 emissions

Relatively few countries/regions contribute the majority of the CO2 emis-

sions from fossil fuel burning. Graphically the situation is shown in Figure

4 for the year 2004 and in table format in Table 1 for the year 2008. Includ-

ing estimated fossil fuel emissions from the United States, China, and the

European Union accounts for approximately 55% of CO2 emissions. Adding

Russia, India and Japan brings the total to approximately 70% of fossil fuel

CO2 emissions. In this report we therefore suggest concentrating initially

on estimates of emissions from the United States, China, and the European

Union, and secondarily from Russia, India, and Japan.

Table 1: Carbon Emissions from Energy Consumption. Source: Adopted
from US EIA estimates of CO2 emissions. Note that the units are peta-
grams of carbon, rather than petagrams of CO2. (For comparison, the EIA
estimated the world emissions in 2000 to be 6.5 petagrams, or about 24
petagrams of CO2.)

Carbon Emissions from Energy Consumption
Region 2008 Emissions

(Petagram Carbon) (%)

World 8.15 100
China 1.70 21
United States 1.64 19
EU-27 1.16 14
Russia 0.45 5.7
India 0.38 4.9
Japan 0.34 4.0
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Figure 4: Total CO2 emissions. Country size is proportional to national CO2

emissions in 2004. SOURCE: Oak Ridge National Laboratory.

Table 2: Average Downwind Enhancements for Selected Cities and Countries
(2005 Estimates). SOURCE: [2].
Country/City Area CO2 Emissions Total Column Boundary Layer

(km2) (GtCO2/yr) (ppm) for 1 km (ppm)
United States 9,827,000 5.9 0.76 6.8

China 9,571,000 5.6 0.73 6.5
Russia 17,075,000 1.57 0.15 1.4
Japan 378,000 1.25 0.82 7.3
India 3,166,000 1.22 0.28 2.5

Los Angeles 3,700 0.073 0.49 4.3
Tokyo 1,700 0.064 0.63 5.6
Beijing 800 0.074 1.1 9.4
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For reference, in Table 2 we provide some typical downstream enhancements

using Eq. 2-1 for the US, China, and for several large cities as given in the

recent NRC report [2]. We also note that the enhancement 2 km downwind

from a 1 GigaWatt coal-fired power plant will be about 2 ppm for a total

column measurement and about 15-20 ppm for an in situ measurement in

the boundary layer.

2.3.2 Benchmarks for accuracy of CO2 emission estimates

NOAA’s CarbonTracker Project (see [7]) provides an example of the accuracy

currently obtained for estimates of CO2 emissions using an in situ sampling

system. There are CarbonTracker projects in both the US and Europe, with

the European effort carried out in collaboration with Wagenigen University.

Figure 5 shows the CarbonTracker Europe sampling network and Figure 6

shows emissions estimates obtained for Europe between 2001 and 2007. It

is important to recognize that the fossil fuel estimates shown in Figure 6

are not direct measurements, but rather bottom-up estimates. These plots

therefore represent a direct measurement estimate of the yearly biospheric

and ocean fluxes assuming that the bottom-up fossil fuel estimate is correct.

The emphasis of CarbonTracker to date has been on estimation of biosphere

uptake and loss, not on an independent direct estimate of fossil fuel emis-

sions. However, CarbonTracker does hope to introduce a process model for

fossil-fuel CO2 production in the future and then perform a joint optimiza-

tion and obtain estimates of both of the principal components, the biosphere

and fossil fuel burning. It is plausible that the errors on the direct estimates

of fossil fuel CO2 emissions will be comparable to the errors on the biospheric

component, i.e roughly 30% of the net flux, or about 0.5 PgC/yr, 1-sigma.

Combining in situ estimates with satellite observations should further im-

prove the achievable accuracy for anthropogenic CO2 emissions.

It is useful to set a benchmark to assess future progress in estimation of

anthropogenic CO2 emissions for the purpose of monitoring international

agreements. Ideally, we would like to set a goal of 10% or even better accu-
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Figure 5: In situ sampling network used by CarbonTracker Europe.
SOURCE: CarbonTracker Europe

racy for the measurement of anthropogenic CO2 emissions from a major GHG

emitting country. However, given the current demonstrated state-of-the-art

in direct measurements of CO2 and given the uncertainties in transport mod-

eling we prefer to set a less stringent benchmark as an initial step towards

achieving useful direct measurement capability for CO2. JASON has there-

fore chosen ±20% (90% confidence) measurement uncertainty as an initial

benchmark by which to evaluate the ability of the US to estimate annual

anthropogenic CO2 emission from a country or region. This benchmark was

chosen as a compromise between what we believe is achievable and what is

required for treaty monitoring. It assumes a modest level of reasonable prior

information, which is combined with the direct measurements to yield an

emissions estimate. This prior information might include: process models for

biospheric processes, process models for anthropogenic sources of CO2, and

population density information. Such prior information is typically required
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Figure 6: Emission estimates for net flux and terrestrial biospheric flux de-
rived from CarbonTracker Europe. The left hand panel is an initial guess
at the fluxes using land and ocean process models. Fossil fuel and fire esti-
mates come from a “bottom-up” estimate. The right hand panel shows the
estimates after incoporation of data from the in situ sampling network. Note
in particular the errors in the right hand panel which are about 0.5 PgC/yr
or about 30% of the estimated net flux. See text for discussion. SOURCE:
CarbonTracker Europe

to derive estimates from a limited sample of concentration measurements (see

Section 5).

As discussed above, the largest GHG emitting nations include: China, the

U.S., Russia, Japan, and India, as well as the European Union as a region.

For some of these, direct measurements at the ±20% level will be difficult

to achieve as it is not only the total emission level that is important, but

also the emission density (i.e. tonnes of CO2 per square kilometer per year,

see Table 2). We suggest starting with the larger emitters: the European

Union, China, and the U.S. with the goal of developing a direct measurement

capability for these at the ±20% level or better. We are optimistic that

these levels can be achieved through a combination of satellite and in situ
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measurements. Once this capability has been demonstrated, the accuracy of

both the measurements and the transport modeling will be better understood

and it should be possible to better ascertain whether a further improvement

to ±10% accuracy, or better, is readily achievable. The ultimate technical

goal should be to improve the satellite and in situ sampling networks to the

level that estimates of CO2 emissions are limited by natural variability rather

than by measurement and modeling errors.

2.4 Monitoring of Energy Infrastructure as a Near-
Term Alternative to Direct Measurements

Direct measurements of GHGs are critically important. The goal of inter-

national agreements on GHGs is to limit the effect of the growth of GHGs

on climate and the environment. Consequently, direct measurements of the

gases are needed to validate the ultimate efficacy of the treaties in limiting

GHG growth. While bottom-up approaches such as inventories and proxy

data are needed to help monitor compliance with international agreements,

it is only through measurement of the gases themselves that it can be demon-

strated that the agreements are having their desired effect of reducing GHG

production. This is particularly true for CO2 from land-use and GHGs other

than CO2 which are more difficult to monitor accurately through bottom-up

approaches.

However, as discussed above, direct measurents of anthropogenic GHGs are

very challenging, particularly for CO2 for which the signals are small, vari-

ability is high, and transport modeling difficult. Progress in improving the ac-

curacy of direct measurements will likely take place on a 5-10 year timescale.

As a consequence, it is useful to consider indirect bottom-up approaches as

a near-term alternative to direct measurements.

In Section 3 we discuss monitoring of energy infrastructure as a useful com-

ponent for monitoring international agreements. Characterizing and quanti-

fying the enegy infrastructure of large GHG emitting countries has two ben-
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eficial aspects. First, it can monitor compliance with promised actions, for

instance, transition from a carbon intensive to a low-carbon energy system.

In particular, monitoring of the energy infrastructure can verify installed ca-

pacity for production of energy from non-fossil energy sources, something

that direct measurement of GHGs will not do. Second, accurate knowledge

of the energy infrastructure of a country could yield a “proxy” estimate of

CO2 emissions by assuming emission factors for various supply and demand

sectors a country’s energy system. These proxy estimates will be useful for

comparison with direct measurements. Further, knowledge of the energy in-

frastructure will allow better process models to be built for CO2 emissions,

which will be useful in the transport modeling required for direct measure-

ment approaches.

An attractive aspect of energy infrastructure monitoring is that the technical

basis for such monitoring already exists and an operational system can be

deployed quickly. This can provide a near-term capability for monitoring of

actions promised under international agreements. We emphasize the differ-

ence between monitoring actions, which can be done in the near term, and

estimating CO2 emissions by characterizing energy infrastructure, which will

have a distinct set of challenges and take longer to develop into an operational

capability.

We discuss monitoring of energy infrastructure in the next section of this

report.
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3 ENERGY INFRASTRUCTURE MONITOR-

ING

Much of this study concentrates on development of point and remote sensors

that can be used to deduce the CO2 emissions of a country and/or region of

interest, with or without auxiliary information about deployed energy infras-

tructure. In this respect, the sensing problem is being approached neutrally,

without regard to the details of the transition in energy infrastructure that

would be required to implement a low-carbon energy system on the scale of

a country or a region. In the following we discuss the telltale signatures of a

low-carbon energy system, how they could be monitored, how such signatures

can be used to evaluate whether a country has actually installed low-carbon

energy systems or not, and how to assess the extent of continued use of fossil

fuels.

Note that in this process we do not necessarily seek to establish quantita-

tively whether a country has reduced emissions by 80%, or 70%, or 90%

relative to some baseline level, although this may be a secondary objective.

Rather, the first objective of energy infrastructure monitoring is to confirm

that actions are being taken to install generation capability from alternative

energy sources (e.g. construction of wind farms, etc.) and that actions are

being taken to reduce generation by fossil fuel sources (e.g. reduction in oil

imports or refinery throughput).

We also note that the approaches outlined here are primarily useful for char-

acterizing actions related to reductions in anthropogenic fossil fuel CO2 emis-

sion, and are not as useful for deducing the net carbon dioxide emissions of

a region, nor are they as useful for GHGs other than CO2.

Low-carbon energy systems are characterized by only a limited set of choices

for electricity generation and for fuel consumption. For example, if emissions

are to be eventually cut by 80%, then essentially there can be no operation

of natural gas utilities or associated natural gas infrastructure that supplies
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individual consumers, e.g. for heating of buildings. Otherwise, the emissions

associated with such natural gas consumption alone will exceed the region’s

total CO2 emissions budget. Similarly, all electricity generation must be es-

sentially carbon-free, meaning either fossil fuel combustion with full carbon

capture and storage, nuclear power, and/or large-scale renewable power, pri-

marily from wind and solar electricity generation. Crude oil consumption

needs to be greatly reduced, being reserved for use by aircraft, ships, and

heavy-duty vehicles, or these parts of the transportation sector need to be

served by biofuels, with the remaining oil consumption devoted to serving

other parts of the transportation sector, such as in light duty vehicles includ-

ing plug-in hybrids for example.

Hence, one approach to verifying whether a country/region is reducing emis-

sions would involve means of estimating the amount of low/no carbon energy

generated and comparing this value to what would be needed to supply the

countrys demand in a low/no carbon fashion. In this approach, we are de-

scribing methods to verify the installation and deployment of tomorrow’s

energy system, instead of verifying incremental or modest emissions reduc-

tions in today’s carbon-intensive energy systems.

We emphasize several points with regard to this approach:

• The emphasis is on monitoring actions that accompany energy infras-

tructure, rather than monitoring or estimating net CO2 emissions.

• The methodology can be used to monitor compliance with international

agreements to undertake actionable items, e.g. increasing the share of

energy generated by non-fossil fuels.

• Technical methods currently exist that can be used to monitor energy

infrastructure of large GHG emitting countries. They benefit from, but

do not require, the cooperation of the emitting country.

• The large changes in the energy infrastructure during a transition to a

low-carbon system have large signatures that can be monitored using
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many different methods. Extensive detailed information already exists

on the energy infrastructures of large countries. This can be supple-

mented with visible and thermal remote sensing to validate and extend

such information.

• A similar methodology can be applied to monitoring actions related

with carbon offsets.

• It is important to begin immediately to establish baselines for the en-

ergy infrastructures of large GHG emitting countries.

3.1 Monitoring Supply Sectors

A system for monitoring energy infrastructure can either focus on monitoring

the supply sector of the energy infrastructure, or the demand sectors. Fig-

ure 7 is a recent estimate by the DOE Energy Information Administration

of the energy flow in the US energy system. To understand the transition

from a carbon-intensive system to a low-carbon transition, the relative sizes

of the fossil-fuel and non-fossil fuel supply sources need to be estimated. The

approach we suggest is to monitor the “choke points” in the energy supply

system i.e. quantitatively assessing the size of various sectors: the electricity

generation sector, the natural gas distribution sector, the coal production and

transportation sector, and the oil transport and refining sector. We discuss

each of these these in more detail in following sections.

We envision a monitoring system that collects input from multiple sources:

visible and thermal imaging satellites (both civil and commercial), available

data on energy production and consumption (compiled by both private and

governmental organizations), and industrial data on the characteristics of key

components of an energy infrastructure (e.g. refinery design, electric turbine

characteristics, nuclear power plant operating characteristics, etc.).
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Figure 7: US Energy Flow by Source and Sector. SOURCE: DOE/EIA

3.1.1 Electricity generation sector

a) Nuclear power

The generation capacity of a nuclear power plant can be readily established by

its design parameters, as well as by the amount of fuel consumed. Capacity

factors for nuclear power plants are typically 90%, and it is reasonable to

assume that no one is going to build a large nuclear power plant and declare

unused capacity merely for the purpose of carbon treaty compliance (the cost

of not running the plant at 90% of its rated capacity and bearing the cost of

that underutilized capital, which is a large fraction of the total cost of nuclear
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electricity, is just too high). Optical imaging with moderate resolution, such

as that available on Google Maps, can readily reveal the number and location

of nuclear power plants in a country or region. Thermal imaging might also

be useful in estimating the amount of power being generated at a particular

time by each power plant; the electrical power output of a given reactor

design (such as the Westinghouse AP1000, for example) is well known and it

might thus be possible to to roughly constrain the output generation power

at the time that the facility is being interrogated.

b) Solar power

The average insolation of any region of a country is well-known, and is pub-

licly available on readily accessible maps. Additionally, the capacity factors

of both solar thermal and solar photovoltaic systems are also well-known.

Solar photovoltaic capacity factors are approximately 0.2, averaged over a

year; relative to peak capacity, a factor of 2 reduction occurs due to the diur-

nal cycle, another factor of 2 reduction occurs due to time-of-day variation in

insolation for non-tracking, flat plate, systems, and the remaining reduction

results from the averaged level of obscuration due to cloud cover. This last

factor is also well known for different regions as well, and so local corrections

on a yearly averaged basis can be readily applied to a given system.

A survey of the total area of installed solar panels, their angle of inclination,

and their location can thus yield an estimate of the total electrical energy

generated by that system in a year. Similarly, a survey of the number of

concentrated solar thermal dishes, troughs, etc., along with the local inso-

lation and capacity factors, can be used to estimate the power production

from utility-scale solar thermal installations.

Note that to make a material contribution to electrical energy production,

very large areas, and very large numbers of, such solar systems will need to

be installed. They also do not go away and hence even an occasional, annual

or less often, overflight, will suffice to reveal the extent of such installations

in the region of concern.
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c) Wind power

The wind energy potential is well-known for most of the world, both at 50

m hub heights and at 80 m hub heights, and can be found in maps that are

readily available on open sources. Capacity factors of wind turbines are also

well-known, and depend primarily on the class of the local wind resource.

The peak capacity of a wind turbine is readily estimated from the physical

parameters of the turbine blade. Typical modern wind turbine blades are

50 m in length, with next generation blades being perhaps 80 m in length.

Extensive generation of electricity from wind will require installation of a

very large number of wind turbines. Information on the dimension of the

turbine blades could be obtained from optical imaging. Additionally, blade

dimensions, as well as the rotation speed of wind turbines in the wind farm,

can be obtained through use of radar information that is now considered an

annoying issue of concern with respect to interfering with air traffic control

radars (c.f. [17]).

d) Hydroelectricity

Hydropower is essentially maxed out globally, so it is not really necessary to

monitor hydroelectric generation for expanded deployment associated with

additional electricity production that would be needed by a country to tran-

sition to a low-carbon energy system. Nevertheless, it is possible to estimate

the amount of hydropower that a country or region is producing. The surface

area, and volume, of most major reservoirs is well-known and can readily be

found in open sources. In addition, the amount of hydroelectricity produced

in a year from a specific reservoir can be estimated by using satellite altime-

try to monitor the change in height of the water in the reservoir at selected

times, presumably at the end of winter and at the end of the summer, for

example. TOPEX/Poseidon can determine sea level with a precision of 4.6

cm, for example. Knowledge of the head height of the dam and the fact that

hydroelectric power generation is typically 85-90% efficient, then allows facile

calculation of the amount of hydroelectricity produced by a given reservoir in

a year. For example, see [13]. Summation over an entire region and/or coun-
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try thus yields the amount of hydropower produced by a country of interest

in a given year.

3.1.2 Electricity distribution system

Essentially all low-carbon energy systems have a significant increase in elec-

tricity generation as a percentage of delivered energy relative to todays fossil-

dominated infrastructure. In addition to monitoring the generation sources

(either distributed, as in the case of wind and solar electricity, or localized, as

in utility-scale fossil-fired power plants or nuclear power plants), the supply

of the electrical system might be further monitored by monitoring key loss

points in the system. For example, step-down high-voltage transformers have

a 30 year lifetime (or more), and all exhibit inductive losses on the order of

1-2%. These losses produce a thermal signature that could be monitored,

to estimate the level of power supplied along key distribution nodes in the

electrical grid. Thermography from aerial overflights is used, for example,

routinely, for monitoring and inspection of transmission lines, joints, and

other parts of the electrical transmission grid (c.f. [14]). The quantitative

accuracy of such remote estimates of energy usage could be assessed by mak-

ing observations of electrical distribution systems in the U.S. and compared

to actual usage data.

3.1.3 Fossil fuel production, distribution, and sequestration

a) Oil

For a country that has little indigenous oil production capability and/or

resources, monitoring oil imports is relatively straightforward: oil is supplied

on super-tankers, whose capacity is well-documented (and which are also

readily monitored by a variety of means). The quantity of oil delivered is

also readily available from commercial transactions on the oil market. To

first order, all of this oil is burned, so the associated carbon emissions are

readily calculated.
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For a country such as China or Brazil, that has significant domestic pro-

duction (for China, total oil consumption is 7.8 million bbl/day, of which

4.0 million bbl/day is produced domestically and 3.9 million bbl/day is im-

ported [9]), one needs an independent method to estimate the amount of oil

consumed by the country/region. One approach is to monitor the country’s

oil refineries. All refineries have prominent distillation towers: the first step

in processing of crude is to distill the crude, so as to separate the crude oil

into various cuts, depending on their boiling point. The capacity of refineries

around the world is well-known and documented in open sources [10], such

as the Energy Information Agency (EIA). Refineries typically run at 80-85%

of capacity, averaged over the year. The thermal signature of the distillation

tower can be measured for existing refineries and then used to roughly gauge

the throughput of that refinery in the future as well. Although the specific

heat of crudes can be different, they are not different by very much between

crude types.

There are also opportunities to reconcile estimated crude oil refining in the

supply side with estimates of petroleum usage on the demand side, at least in

the late stages of transition from a carbon-intensive to a low-carbon energy

system. In a low-carbon economy, essentially all liquid hydrocarbon-based

fuels will have to be used for aircraft, ships, and heavy-duty transportation,

for which there is no currently credible alternative to liquid hydrocarbon

fueling. Collectively, these markets comprise approximately 40% globally of

the transportation sector demand for fuel; hence if emissions are to be cut

by 80%, light duty vehicles can not run on hydrocarbon fuels obtained from

refining crude oil. Hence verification of compliance would involve verification

that essentially all emissions from mobile, light duty vehicles are not derived

from liquid hydrocarbons produced by refining of crude oil. To do this,

we do not propose to monitor the tailpipes of a large number of light-duty

vehicles. A useful approach might involve spot collection of samples that

can be subjected to analysis for their 14C/12C content. The 14C content

of the CO2 in the troposphere spiked in the 1960s as a result of nuclear

testing. Emissions of CO2 derived from fossil fuel combustion (which has
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essentially no 14C content) reduces the 14C content of the air in the region of

combustion. Especially prominent reductions in 14C have been observed in

major cities, due to emissions from vehicles, and around fossil-based electric

power plants. It should suffice to verify a reduction in emissions arising from

transportation in selected areas such as major cities and the sampling need

only occur on an annual basis. Hence a tree can be analyzed for its 14C/12C

content through a series of tree rings; leaves on deciduous trees that drop in

the autumn can be analyzed to yield the 14C/12C content for a locality in a

given year, or embassies can grow an annual potted plant and send a stem or

leaf for analysis, to obtain the desired information, which is collected using

accelerator-based mass spectrometry. In a low-carbon energy economy, there

should be little depletion of 14C in these air samples no matter where they

are collected. See Section 4 and Appendix D for further discussion of how

isotopic measurements can be used to characterize the processes that helped

produce the CO2 in a given sample.

b) Gas

A low-carbon economy can have essentially no distributed natural gas emis-

sions. Hence natural gas pipelines to places other than utility electrical

generation facilities equipped with CCS should not be in operation. Com-

pliance can be ascertained as follows: a) all natural gas pipelines leak, and

the fugitive gas leaks can be detected using remote sensing methods in an

operating pipeline but should be absent in a pipeline whose usage has been

discontinued; b) pumping of gas through a pipeline requires pressurization of

the gas to overcome the frictional dissipative losses of the gas in the pipeline.

The pumps will dissipate heat, and when operative, will produce a thermal

signature that can be detected by remote sensing techniques.

Compressors can be of various sizes, typically ranging from 75 kW to 2000 kW

in size. The dimensions of most installed natural gas pipelines are well-known

in the open literature, and dimensions of any newly constructed pipelines

would be readily ascertained during the construction phase. The pumps are

sized to overcome the frictional dissipative losses associated with gas moving
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at a certain velocity through the pipeline; these losses go as the cube of

the gas velocity. Compressor stations are typically 15-22 acres in size and

are placed at 40-100 mile intervals along the pipelines. Locations of major

pipelines and compressor stations are generally well known.

c) Coal

The Daqin line in China carries 1.2 million tons of coal per day. The Power

River Basin in Montana/Wyoming produces over 1 million tons of coal per

day as well. These open top rail cars are generally maximally loaded by

weight with coal, of widely known rank. These rail shipments are well over

a mile long and would be hard to miss in optical imagery. A statistical

sample of coal rail shipments achieved through imagery would yield useful

information on coal consumption patterns.

These rail cars have to go somewhere to deliver their coal. As an example, a

map of coal reserves in China is displayed in Figure 8. This coal will either

will go to fixed sites, for electrical power generation at utilities, or to dispersed

sites, such as to industries. Currently in China about 50% of the coal is used

for electricity production at utilities, and the remainder goes to industry. In a

low-carbon energy system, essentially no coal can be combusted at locations

other than fixed sites which are equipped with carbon capture and storage

systems. One can assume that any coal headed to sites that are not equipped

with CCS capability produces a stoichiometric amount of CO2 released to

the atmosphere upon combustion. The rank of the coal is well-known based

on its origin, and hence the emissions associated with combustion of this coal

can be readily estimated as well.

Major coal-burning sites that are equipped with CCS will have a variety of

observable signatures. Of course, the number of coal cars that are entering

the site can be estimated using the statistics of observations of the coal

trains. In addition, the facility will have a detectable and characteristic

thermal signature that will be associated with its power production capacity

and with its operational protocols (see e.g. Figure 9). The economic sweet
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Figure 8: USGS map of China Coal fields. SOURCE: USGS.

spot for CCS is about 80% capture of CO2 in the flue-gas, when the only

currently proven method, involving the use of MEA (methyl-ethanol-amine)

as the capture medium, is employed. Hence a detectable concentration of

CO2 will be present in effluent from the CCS facility. The desorption reactor,

in which CO2 is released from the MEA, will have a thermal signature. The

compressors that are needed to pressurize the CO2 for pumping the gas

underground will have significant thermal signatures (c.f. [8]), typically being

sized at 60 MW for a 500 MW advanced pulverized coal plant, and 30 MW for

a 600 MW integrated gasification combined cycle (IGCC) plant. Calibration

of these thermal signatures and CO2 effluent signatures would likely suffice

to yield a fairly robust estimate of the power produced by the facility as well

as the amount of CO2 directed under the ground and also of the amount that

is escaping out of the facility in the effluent gas stream.
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Figure 9: ASTER satellite false-color images acquired over Joliet 29, a coal-
burning power plant in Illinois. Joliet 29 can be seen in the VNIR image
(top) as the bright blue-white pixels just above the large cooling pond. In
the bottom image, a single ASTER Thermal Infrared band was color coded to
represent heat emitted from the surface. The warmest areas are white; pro-
gressively cooler areas are colored red, orange, yellow, green, blue, and black
for the coolest. Note the bright white plume of hot water discharged from the
power plant. SOURCE: http://visibleearth.nasa.gov/view rec.php?id=1716

3.2 Monitoring Demand Sectors

Our study investigated ways to monitor a country’s energy infrastructure us-

ing data and observations of energy supply sources. It seems to us that this

is the most straightforward and robust approach to characterizing the large

scale energy infrastructure. However, this approach could also be comple-

mented with data and observations from the demand sectors. The estimates

from both approaches could be compared and checked for consistency.
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An example of a project which focuses on the demand side is the Vulcan

Project [16]. The Vulcan Project has produced maps of US energy con-

sumption with higher spatial/temporal resolution (10km x 10km) than that

provided by typical inventory analyses (1 deg x 1 deg) [11]. Higher spatial

resolution requires detailed data on many aspects of energy consumption:

detailed road/highway usage statistics, population and building character-

istics, etc. Gurney et al. [11] show that the Vulcan estimates yield results

very similar to the DOE/EIA inventory estimates, but that their spatially

resolved CO2 emission estimates are significantly different than earlier esti-

mates calculated on a 1deg x 1deg grid. Estimating the spatial distribution

of CO2 sources is an important component of the modeling process used in

direct measurements to derive estimates of emissions from measurements of

CO2 concentrations. This is discussed in detail in Section 5.

We note that the Vulcan Project has recently proposed to extend some of

their methodology on a global scale to countries other than the U.S. They

propose to use the assimilation approach described by Rayner et al. [15]

called the Fossil Fuel Data Assimilation System (FFDAS). This system has

the goal of assimilating many different types of data to produce spatially

resolved global estimates of CO2 emissions. Types of data could include:

EIA global energy estimates, satellite observations of nightlights, Landscan

population data, MODIS satellite data, ASTER thermal imaging data, and

SCIAMACHY NO2 data [12]. Aspects of this assimilation approach may be

useful for the supply sector monitoring described earlier.

3.3 Estimating CO2 Emissions using Knowledge of En-

ergy Infrastructure

While the principal objective of monitoring energy infrastructure is to detect

the signatures of a transition from a carbon-intensive to a low-carbon energy

system, it will be useful to attempt to also use the monitoring information

as “proxy data” to make an estimate of fossil fuel CO2 emissions. Making
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such proxy estimates has a number of challenges.

It is reasonably straightforward to design and set up a program to collect

and evaluate proxy measurements, and we discussed some of the aspects in

the preceding sections. In principle, at least for cooperative countries, most

source locations of CO2 emission are known and the technology employed is

known, so in principle it is straightforward to design proxy measurements

and calibrate them on known plants in the U.S. and elsewhere. In practice,

proxy measurements are probably not an effective way to survey or discover

sources of CO2 emission, directly anthropogenic or indirectly anthropogenic,

including those emissions from “Agriculture, Forestry and Other Land Uses”

(AFOLU). Nor do proxy measurements of energy infrastructure provide much

information about GHG other than CO2.

There will surely be inaccuracies at the 20% level or greater from unreported

or non-standard practices in less developed nations. Aspects such as IR flux

that depends on emissivity, or wind turbines and solar farms that are placed

at better-than-average, cherry-picked locations will not be easy to quantify

accurately. It is also possible that large scale usage changes might occur, for

example household, from rooftop photovoltaic power becoming dominant in

India. This would cause a steady drift in accuracy of proxy estimates.

Despite these challenges, we recommend that estimates of fossil fuel CO2

emissions using proxy data be attempted. As mentioned in the introduction,

these proxy estimates will be useful for comparison with direct measurements

and could also allow better process models to be built for CO2 emissions that

would be useful in the transport modeling required for direct measurement

approaches.
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4 DIRECT MEASUREMENTS

Our goals for this study are to prescribe an “investment market basket”

of actions that would optimally measure CO2 fluxes and whose accuracy we

could evaluate. We believe there are a number of opportunities for better and

more informative CO2 measurements, and we will describe some potential

capabilities, trying to provide estimates of what costs might be. However,

we find that models are not yet mature enough to provide an estimate of

the relative accuracy that different measurement strategies provide for flux

estimation, and therefore we cannot yet optimize the value/cost proposition

for different market baskets. For example,

• An OCO-3 [20] or “CarbonSat” [18] are being thought of as future

satellites in LEO, but we think that placing a slightly modified system

at GEO would be more valuable at the same cost.

• Relatively modest resources could be used quite differently to build

an in-situ sampling network or fund aircraft sampling that would offer

a remarkably dense set of measurements that we think might prove

to be more valuable for inverse modeling from concentration to flux

estimation.

• On the modeling front, CarbonTracker [7] is a well integrated system

that derives ocean and biogenic CO2 fluxes from inputs from meteorol-

ogy, emission models, and sparse sampling of CO2 concentration. We

suspect, however, that CarbonTracker is close to being limited by its

meteorological input and assumptions, and that substantial work in

improved global modeling would reap large benefits in being able to

more assimilate more information and more accurately quantify fluxes.

In this section we will describe various measurement opportunities in some

detail, but we recommend that it is just as important to advance models that

quantitatively assess the effectiveness of measurements as the measurement

methods themselves.
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The sections below discuss the context, methods, and constraints of CO2

measurement, the opportunities for “in-situ” measurement, the role that

satellite measurement can play, and finally recommendations. Appendices

provide greater detail for the various sections.

4.1 Context

There are large, natural fluxes of CO2 that have changed the planet’s CO2

level dramatically over history. Life has created large reservoirs of carbon

captured into plants, soils, carbonates, and fossil carbon and oils, and the

uptake and release of CO2 continues at a scale that is large compared to

anthropogenic emissions. Of course only a small change in greenhouse gas

concentration may be needed to drive significant temperature and climate

change, potentially causing a problem for an ecology that needs to support

1010 human beings. If we were only interested in the energy budget of the

planet and how CO2 concentrations might give rise to climate change, we

might be contented with measurements from a single location, say Mauna

Loa, because air mixes in longitude within a few weeks, across the equator

in a year, and even through the stratosphere in less than a decade.

However, concern about the growing CO2 concentration from anthropogenic

sources spurs us to ask much more detailed questions about the location

and fluxes from sources and sinks, both man made and natural. Even per-

fect knowledge of the CO2 concentration everywhere does not tell us fluxes

— additional information on diffusion rates and transport is essential. We

therefore find ourselves needing to marry models of diffusion and transport,

global meteorology, with concentration measurements.

Mixing a high concentration of CO2 into ambient gas and transporting it

creates entropy and involves non-linear, chaotic processes, so there are fun-

damental limits on how accurately it can be described. However, the growing

field of “inverse modeling” tries to run the clock backward from sparse mea-

surements of concentrations to plausible locations and fluxes of emission.
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There are many heuristic formulae used for some of the chaotic and small

scale physics that goes on, and as much as possible the models need to be

constrained by data on pressure, temperature, wind velocity, humidity, and

of course concentrations of the gasses of interest. The performance of these

models is not bad and improving, but the greater the span in space and time

they are asked to bridge, the less accurate they will be. Accordingly, the

central question from the standpoint of this study, is:

What combination of spatial sampling density, temporal sampling density,

location, and sensor performance parameters would best constrain estimates

of the anthropogenic carbon emission from a region of interest, when the data

are used in conjunction with an atmospheric transport model, meteorological

data, and assumptions about sources and sinks?

4.1.1 Measurements

Any direct measurement samples the CO2 concentration field, C(x, y, z, t),

over a pixel volume (dx, dy, dz, dt) at a particular location and time at

(xi, yi, zi, ti). In-situ sensors sample a nearly infinitesimal volume, thereby

being vulnerable to high spatial and temporal variability that may be impos-

sible to capture in a model. Satellite sensors sample a volume with a ground

sample distance and atmospheric column that dilutes CO2 concentration by

an order of magnitude relative to concentrations in the boundary layer and

opens vulnerabilities to unmodeled effects such as clouds.

This challenge was studied by Olsen and Randerson (2004) [28], and Figure

10 shows their simulation of local and satellite data at a given location.

The ground level plume from a large city or country might create a CO2

enhancement of ∼5 ppm (parts per million mole fraction of dry air), and

detection of that signal against natural variability using an in-situ sensor is

not trivial, even given a 1 ppm accuracy. The background they calculate for

a column CO2 that a satellite would see is even more daunting, inasmuch as a

sun-synchronous LEO orbit revisits a given ground location every ∼16 days,
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and the column-integrated plume signal has only ∼0.5 ppm enhancement.

Achieving a ∼1 ppm measurement from orbit has yet to be achieved.

Figure 10: A comparison of simulated in-situ and satellite CO2 data. The
upper panel shows a simulation of expected signals from an in-situ sensor,
at a height of 76 m, while the lower panel shows the expected signal as seen
from orbit. Note the difference in scales. SOURCE: Olsen and Randerson
(2004) [28]

Another example of the challenges faced by in-situ measurements from the

RACOON network is shown in Figure 11 [30]. Similarly, we collected data

in La Jolla during the study period (Appendix A) that reveal large CO2

variations from local sources. Extracting anthropogenic signatures in the

face of large background variations will be challenging for sparse density of

concentration measurement.
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Figure 11: Variation in CO2 concentration measured at the NWR station of
the Rocky RACCOON network, for 2006. Note the wide variations seen on
daily and seasonal time scales, which are highly significant compared to the
measurement uncertainty of less than 1 ppm. The NWR site is on an espe-
cially barren ridge, in order to avoid diurnal CO2 variations from vegetation
as much as possible. SOURCE: www.eol.ucar.edu/stephens/RACCOON/.

Obviously a satellite’s sampling trajectory of (x, y, z, t) is highly determined

by its orbit. Atmospheric sensors as well can be deployed at a fixed site or

on a mobile platform, and provide different trajectories in (x, y, z, t), with

advantages and disadvantages to each. We can expect a spatial variability in

CO2 concentration similar to the temporal variability illustrated in Figures 10

and 11, and the (x, y, z, t) measurement trajectory entangles the spatial and

temporal effects. A shrewd choice of trajectory may create information that

is very informative to models, and a bad choice may be very ambiguous.
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4.1.2 Coordination of measurements and models

As the importance of understanding CO2 fluxes has grown, many groups have

undertaken measurement and modeling efforts. To date, it is our impression

that much of the work has been exploring the “state of the possible” without

a great deal of coordination.

The web sites maintained by the CarbonTracker consortium [7] illustrate how

inverse modelling is constrained by observations of CO2. We believe that Car-

bonTracker is an excellent “state of the art production system” that provides

a consistent, well defined product that has real utility. It also provides an

excellent benchmark against which other production or R&D systems can be

compared, and highlights the most important inverse modelling achievements

and shortcomings.

The CarbonTracker modelling basically comprises a meteorological trans-

port model (TM5) that integrates a nested global model based on the winds

from the European Center for Medium range Weather Forecast (ECMWF),

modules for ocean, fire, biosphere, and fossil fuel fluxes, concentration mea-

surements from 89 sites, and a Bayesian assimilation that uses the likelihood

of measurements for a given model and set of flux assumptions to adjust the

flux rates.

Because of the global scale of their model and computational limitations,

TM5 uses a global resolution of 6×4 degree (∼500 km) grid with nested

regions at 3×2 degree, or 1×1 degree, along with 34 vertical levels. Their

integration proceeds with an external time step of three hours.

The ocean module is based on 30 different ocean regions, each with a single

parameter relating flux to Princeton/GFDL MOM3 ocean general circulation

model. The fire module uses the Global Fire Emissions Database that is up-

dated by information from sources such as the MODIS satellite observations

of fires. The biosphere module uses the Carnegie-Ames Stanford Approach

(CASA) model, and divides the world into 12 land regions, each comprised

44



of a mixture of 19 different ecosystems. Lastly the fossil fuel fluxes are taken

from the EDGAR database. Only ocean and biosphere fluxes are fitted, so

there are 30 + 19× 12 = 258 adjustable parameters that CarbonTracker can

use to bring the models into agreement with the observations. (In fact 113

are set to zero because of ecosystems not found in land regions or because

some ecosystems have negligible CO2 fluxes.)

CarbonTracker does a good job of parsing the global change of CO2 into

its distribution around the world, and provides interesting hints about how

the oceans and biosphere are performing as sources and sinks. From the

standpoint of anthropogenic emissions, however, CarbonTracker is essentially

reflecting the EDGAR estimates. CarbonTracker is not designed to accept

large and diverse CO2 concentration measurements such as those from AIRS,

it cannot simultaneously solve for meteorology and transport as well as CO2

flux, nor does it have the spatial or temporal resolution to identify and quan-

tify individual sources of CO2 emission. We discuss more ambitious modeling

efforts in Section 5.

For in-situ sampling, for example, actual measurement of CO2 concentration

was originally very expensive, making it cost effective to collect flask samples

from about 50 sites that were brought to a central facility where the CO2

could be measured by analytical chemistry or an accurate IR opacity instru-

ment. This obviously limits the spatial and temporal density of samples, but

was the foundation of the CarbonTracker inverse models. The network is

now been extended to 89 locations, many performing the CO2 measurement

on site, using a gas chromatograph or an instrument such as a Picarro laser

ring-down unit to calibrate against standardized cylinders of gas distributed

through the World Meteorological Organization (WMO). These instruments

do an excellent job of attaining <1ppm absolute accuracy, but cost over

$100k and are non-portable especially with gas cylinders. CarbonTracker

ingests only one measurement per site per day, and the analysis runs about

two years behind the present.
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A group at NCAR has developed an instrument called “AIRCOA” (Stephens

et al. [29]) that uses a Licor LI-820 sensor (about $4K) and external calibra-

tion cylinders of CO2 for a system cost of about $10k. They have deployed

six towers in the Rocky Mountains separated by about 400 km (the “RAC-

COON” project) that sample CO2 at ∼100 sec intervals, and attain a ∼1 ppm

accuracy. This is easily accurate enough to map out the diurnal cycle of CO2,

and sampling at three elevations up their towers, they can see vertical CO2

gradients. Only two of these sites are part of the CarbonTracker network,

chosen to be particularly barren and therefore with low contamination from

vegetation. The rapid time cadence, the contribution from vegetation, and

the vertical gradient are not features that CarbonTracker can make use of at

present.

It is our sense that capabilities have been advanced as costs have come down,

but we do not yet know the value of the increased sampling. Does a rela-

tively dense network of samples from the Rocky Mountains with a very dense

temporal sampling improve our ability to ascertain fluxes from sources in Cal-

ifornia, for example? Does sampling the diurnal cycle help us understand the

vegetation sink and source rates? Does it help calibrate the normalized dif-

ferential vegetation indices (NDVI) estimates from satellites into CO2 fluxes?

Another important question to which modelers need to provide input is the

accuracy required for concentration measurements and the level of systematic

drifts that can be tolerated. Although the locale of a source of emission may

see tens of ppm enhancement in CO2, as soon as the gas is mixed or when it

is seen as part of an integrated column from a satellite or when it is part of

a large ground pixel, the mean concentration can easily be only a few ppm

or less. Therefore an accuracy of “1 ppm” absolute is commonly put forward

as the threshold of where measurements become useful to models, with an

understanding that much lower concentration uncertainty can be obtained

by averaging.

We are concerned that satellite measurements may not achieve this. For ex-

ample, Miller at al. [20] analyze the flux accuracy that ought to be achievable
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by OCO and conclude that useful constraints should emerge if OCO achieves

1 ppm accuracy, but not at 5 ppm. However, the actual column-averaged

CO2 concentration downstream from even the largest cities and countries is

a fraction of 1 ppm, indicating that the OCO analysis assumes considerable

improvement from averaging before limitations from systematic error. Is this

level of averaging strictly necessary? For example, changes in CO2 concentra-

tion in space or time might provide excellent constraints for model’s ability

to obtain fluxes from concentrations, and satellites are likely to be able to

achieve much lower systematic errors for such differences. Would this be

informative to models or not?

Another possibility for management of satellite systematic error comes from

the current best-fit decomposition of covariances in measurements (especially

satellite) and reporting quantities such as “dry molar fraction of CO2 inte-

grated over an altitude kernel” and an uncertainty. It may be that models

can help. For example, it may be that a satellite fundamentally measures

a combination of CO2 and water or pressure, with uncertainty as described

by a covariance matrix. If the model has a better idea of water or pressure

than the satellite observation, or derives constraints from a different mix-

ture of the two quantities, the measurers are doing the modelers a disservice

by not reporting the full covariance matrix and letting the modelers use it

to evaluate their own likelihoods. The reason that this is so important is

that satellite observations typically have very high signal to noise but are

highly susceptible to covariance between molecular species, aerosols or other

scatterers, ground albedos, contributions along the line of sight, etc.

We note that the comparison of model with data permits CarbonTracker to

assess a bias and uncertainty distribution for each site, the errors and biases

ranging from below 1 ppm to as much as ∼5 ppm. Does this mean that a

site with a systematic offset of ∼5 ppm can be assimilated because of the

consistency required by the model? Could a systematic drift of ∼5 ppm

per year be tolerated? Clearly some sites must be known to be accurate,

but perhaps a relatively small subset. Relief from 1 ppm absolute accuracy
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would make an enormous difference for the cost, complexity, and weight of

measurement equipment, and would open the door for much higher measure-

ment density. Measurements must have some accuracy to be useful, but a

better understanding of tolerable error margins is most important for mea-

surement design.

What constitutes an optimum mix of measurement location and density?

To what extent can models be formulated to remove systematic biases from

measurements? These questions can only be answered by insight gained from

models, and the optimum value per unit cost requires modelers and measurers

to work together.

4.2 In-Situ Measurements

In this section we describe some of the sensor options for measuring CO2 con-

centration within the atmosphere (or under sea), and follow with a number

of deployment opportunities that may provide accuracy for inferred source

and sink locations and fluxes.

4.2.1 Direct CO2 measurement techniques

There are basically three methods for measuring the amount of CO2 in a

sample of gas: direct interactions with the molecules via analytic chemistry

or gas chromatography, mass spectroscopy, and infrared light absorption or

scattering.

van der Laan et al. [34] describe a modern automated system for high ac-

curacy measurement of a variety of greenhouse gasses. The precision of the

measurements is very high, ∼0.1 ppm, and the accuracy relative to stan-

dard cylinders from the World Meteorological Organization (WMO) can be

better than ∼1 ppm. The automated system described by van der Laan et

al. can make several measurements per hour. The equipment to make these

measurements is relatively massive and requires clean lab space, but can be
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obtained for a construction cost of ∼$200K and similar yearly operation cost.

This method has important but limited utility for very wide proliferation

of sampling. The equipment is not portable, for example, and therefore

requires flask samples for measuring CO2 at altitude or at unimproved sites.

As pointed out in Ref. ([35]), the accuracy of flask samples can be spoiled

by momentary temporal variations in CO2 concentration.

Mass spectroscopy systems range from accelerator mass spectrometers to

conventional magnetic sector systems to small residual gas analyzers. An

accelerator involves some work to introduce the sample into the vacuum of

the spectrograph, but is capable of very high sensitivity for measuring rare

species such as 14C, for example. The instrument requires a large lab, and

the costs are of order ∼$1M for construction and ∼$300K per year operation.

We heard from Tom Guilderson [25] that the LLNL facility can measure 30

samples for 14C per day, limited by counting statistics. For 14C, at part per

trillion relative to 12C, there is no substitute. Conventional magnetic sensor

systems measure the mass-to-charge ratio using an electromagnetic analyzer;

it is typically used for isotopic analysis.

A residual gas analyzer that measures relative abundances of different molecules

that are allowed to leak into the system can be relatively inexpensive (∼$10K)

and compact. The precision of the measurement depends on effects such as

diffusion rates, ionization susceptibilities, and molecular cracking, but it is

plausible that concentrations of different isotopes of the same molecule, such

as CO2 or O2, could be determined with quite high precision.

The third method exploits the characteristic infrared absorption spectra of

molecules, using spectroscopy or non-dispersive IR (NDIR) measurements

of this absorption to infer CO2 concentration. Spectroscopy, either disper-

sive or Fourier transform spectroscopy (FTS) can be extremely powerful for

disentangling different molecules, can offer very good quantitative accuracy,

and is the normal choice for a satellite instrument. We will discuss its use at

greater length in the satellite section, but for direct, in-situ measurements,
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NDIR offers better performance per unit cost than spectroscopy. There are

three tiers of NDIR instrumentation presently available, spanning a range

in price and accuracy, and offering an interesting range of options that we

describe below.

4.2.2 IR absorption in gas cells

Measuring CO2 to a useful accuracy is doubly challenging because it is a

minority constituent of air so the CO2 signal is potentially small, (CO2 con-

centration is only a few percent of typical atmospheric water concentration,

for example, and water itself has only a few percent concentration overall),

but also because we need to detect small relative changes in the signal itself

(1 ppm out of a mean of ∼400 ppm). As a result it is extremely important

to distinguish precision from accuracy; small systematic drifts or biases are

important and are the limiting factor for instrumentation.

Non-dispersive infrared (NDIR) or cavity ring-down spectroscopy (CRDS)

illuminate a sample of gas with an IR wavelength that is absorbed by CO2,

measures the attenuation, and relates that to the CO2 concentration.

CO2 has a number of vibrational bands corresponding to molecular stretches

or bends, and these are split by many rotational lines. Two of the strongest

bands are at 2349 cm−1 ∼ 4.26 μm, corresponding to the asymmetric stretch

mode (C moving opposite to the two O atoms), and at 667 cm−1 ∼ 15.0 μm,

corresponding to the bending mode. (The symmetric stretch mode with C

stationary and the two O atoms moving in opposite directions has no dipole

moment and is exceedingly weak.)

In a 300 K thermal background the asymmetric stretch mode is at a rela-

tively dark wavelength, whereas the bending mode competes against ambient

thermal radiation. The 4.26 μm band is therefore the normal choice for a

gas cell. Other CO2 bands include a strong overtone band at 2.75 μm that

is overwhelmed by water absorption; a moderate strength overtone band at

2.0 μm that neighbors on the strong water line at 1.85 μm; and a relatively
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weak overtone band at 1.6 μm that falls in a gap in water absorption. The

1.6 μm line is a good choice for satellite imagers that integrate a double pass

through the entire atmosphere (∼ 20 km path length). Figure 12 illustrates

the HITRAN-2008 [32] line strengths of CO2 and H2O in the 1–20 μm range.

Recalling the relative densities of H2O and CO2, the merits of the band at

4.26 μm become clear. The line strengths of the 4.26 μm band are illustrated

in Figure 13.

Figure 12: The CO2 (red) and H2O (blue) line intensities are shown between
1 and 20 μm. Each point is a single rotational line.

The absorption at a given wavelength by passage through a gas cell is given

by

A(λ) = e−n L σ(λ) , (4-2)

where n is the number density of absorbers, L is the effective path length

through the cell, and σ(λ) is the cross section for absorption.

The cross section is the product of the line intensity and the absorption

profile. This profile is the relative probability that a photon of frequency ν in
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Figure 13: CO2 lines and intensities are shown between 4.1 and 4.4 μm. Each
dot corresponds to a single rotational line.

frequency interval dν will be absorbed, and depends primarily on the Doppler

shifts of the molecules and the state lifetime. At standard temperature and

pressure (STP), CO2 molecules have a typical velocity of 230 m/s, so the

Doppler component of the line profile is essential a Gaussian of width 0.8 ×

10−6 ∼ 0.002 cm−1 at ν = 2500 cm−1. The typical molecular spacing at STP

is ∼ 3 nm, the typical molecular size is ∼ 0.3 nm, so the mean molecular

free path is ∼ 100 nm, and the mean time between collisions is ∼ 0.4 nsec,

a frequency of γ ∼ 2.5 GHz ∼ 0.07 cm−1. This establishes the lifetime of a

given quantum state, and gives rise to a Lorentzian line profile component

with this width, P (ν) ∼ (γ2 + (ν − ν0)
2)−1. The convolution of these two

functions is called a Voigt profile — a function that has a Gaussian core but

extended 1/ν2 wings. (The peculiar units of line intensity, cm/mol, finally

become clear: it is cm−1×cm2/molecule, absorption profile cross section per

molecule integrated over frequency.)
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If a line profile can be resolved, the total number density of absorbers can be

retrieved by integrating the logarithm of the transmission over wavelength.

If not, the dependence of net absorption in a finite bandpass on density of

absorbers and path length is described by a “curve of growth”. Generically

this curve of growth for a single line depends linearly with nL when the ex-

ponential’s argument is small, flattens dramatically into logarithmic increase

when the Gaussian core of the line becomes saturated, and then resumes

square root growth as the Lorentzian wings become significant. For CO2 this

behavior is complicated by the fact that there are many, closely spaced lines,

and multiple families of lines at lower intensity, as illustrated in Figure 13.

Figure 14 illustrates the transmission through 1 m of air with 400 ppm of CO2

at STP (based on notional profile parameters). Although the low resolution

(∼1.8 nm) spectrum has only 50% absorption, the individual lines are highly

saturated and so the absorption will be a non-linear function of nL.

Figure 14: The transmission through 1 m of air at STP and 400 ppm of
CO2 is shown as a function of wavelength. The upper panel illustrates the
saturation of the line cores. The lower panel shows the entire region and the
mean transmission in 1.8 nm spectral bins.
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A set of calculations with MODTRAN 5 illustrate in Figure 15 the curve of

growth at STP for a square bandpass between 2300–2400 cm−1 as a function

of CO2 concentration, C , and path length, L. A similar curve could be

produced for any bandpass or conditions desired.

Figure 15: The transmission is a function of the nL product, and at STP
this is a function of the product of CO2 concentration, C , and path length,
L. This curve is for a square bandpass spanning 2300–2400 cm−1 = 4.17–
4.35 μm.

4.2.3 Cavity ring-down spectroscopy (CRDS)

Given a tunable laser that has a substantially narrower bandwidth than the

∼0.14 cm−1 full width of rotational lines, it is possible to scan across a CO2

line and obtain the absorption profile. “Cavity ring-down” is an elegant

technique that emits a short pulse of light into a high-finesse cavity, and

monitors the decay in light intensity with time as it bounces back and forth.

The ring-down time is relatively easy to measure and depends on the gas

absorption and the cavity losses. By scanning on and off-line, the cavity
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losses can be differentiated from the gas absorption, the spacing of lines being

so close that the cavity losses are nearly constant. Since low absorption per

pass is advantageous for timing accuracy and accuracy in obtaining density

from the logarithm of the transmission, weak lines can be used as long as the

cavity losses are low enough and the cavity is long enough.

Despite its elegance and ability to make an absolute measurement with-

out reference to standards, CRDS places high demands on the quality and

stability of the equipment. Examples of CRDS include the Picarro G1302

instrument, the Los Gatos Research “Fast Greenhouse Gas Analyzer”, or the

Tiger Optics “Prismatic”. These units are typically about the size, weight,

and ruggedness of a heavy suitcase, consume ∼100 W, cost about $50-100K,

and provide continuous measurement with precision well below 1 ppm and

accuracy of 1 ppm. Variations on these systems can also measure isotopic

abundances (such as 13C).

4.2.4 Non-dispersive infrared

It is possible to use a laser to scan individual rotational line absorption

through a cell and measure intensity instead of ring-down time. For exam-

ple, [33] describe a system based on a diode laser at 2.004 μm propagating

through a beam splitter into a reference and Herriot cell (multi-pass cavity

of length 26×8.8 cm), detected by InGaAs photodiodes. Intended for bal-

loon measurements, their system achieves ∼1 ppm accuracy, uses a novel

pressure matching scheme for their reference channel, weighs about 1 kg and

consumes about 4 W. The instrument fits in a cylinder of diameter ∼20 cm

and length ∼70 cm. Although a prototype, it could probably be reproduced

for approximately $10K, much of the expense from the high precision laser.

If we give up on being able to resolve individual rotational lines, we can still

measure the net transmission through a relatively broad bandpass (∼0.15 μm),

centered on the 4.26 μm line. The basic measurement then involves a light

source of some intensity I , passage through a gas cell of effective length L
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(possibly involving many bounces), and detection of a signal S by a detector

of gain G. Equation 4-2 provides a relation for the monochromatic transmis-

sion through a gas cell, and therefore relates S to the IG product. See also

Eq. 4-3.

We use I and G in a generic sense because, although absolute calibration

of I and G are possible, we would normally expect to include in the IG

combination factors such as solid angles and reflectivities of the gas cell,

and treat it as something to measure. As discussed above, if our system

integrates transmission over a finite bandpass the exponential function must

be replaced with a more complicated curve of growth g, and if individual lines

are non-linear the dependence of cross section σ on temperature and pressure

will affect the integral through the thermal broadening(∝ T 1/2) and pressure

broadening (∝ nT 1/2). This curve of growth and its dependence on P and

T we would normally expect to calibrate by measuring system performance

against gasses of known concentration as a function of P and T in domains

of interest, rather than calculating ab initio.

The ideal gas law relates number density to pressure P , temperature T ,

and concentration C , PC = nkT , so we can write Equation 4-3 for the gas

concentration,

S ≈ IG g(σ′LC P/kT ), (4-3)

where σ′ is a suitable average of σ over the bandpass. An example of g is

shown in Figure 15.

There are therefore typically three unknowns that need to be measured in a

linear system: the offset and gain of the S/IG combination, and the concen-

tration C . (We assume P and T are known.) We would normally expect to

obtain the offset by setting I to zero, the gain by arranging for the argument

of the curve of growth and therefore the attenuation to be zero, and the con-

centration by a third measurement. There are a number of possibilities for

causing the argument of the curve of growth to be zero without disturbing

the IG combination:
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a) change wavelength to where σ(λ) ≈ 0,

b) reduce the CO2 concentration C ≈ 0, or

c) reduce the pressure P (in principle to zero, but reduction by a known

amount allows extrapolation to zero).

The various NDIR instruments all use variants of these methods.

High quality NDIR instruments, typified by the Licor-7500 open path system

or the Licor-840 cell, use a pair of temperature stabilized detectors that

compare the transmission through a path in two ∼0.1 μm bands, one centered

on 4.26 μm CO2 absorption feature and the other at 3.95μm where there

is minimal absorption. These systems are about the size and weight of a

book, consume ∼5W in steady state, cost ∼$5–10K, and provide continuous

measurement with precision below 1 ppm and accuracy of 2 ppm. Many are in

operation at relatively remote and unimproved sites, typically equipped with

elaborate plumbing to convey air from multiple intakes or from calibrated

gas cylinders. For example, Burns et al. [26] used a “man-portable” system

whose net weight was ∼70 kg for their studies on calibration methodologies.

Inexpensive NDIR sensors, of which the SenseAir (www.senseair.se) or Gas

Sensing Solutions (www.gassensing.co.uk) are examples, are available as OEM

boards for ∼$200 from distributors such as CO2Meter (co2meter.com). These

systems use inexpensive IR emitters and detectors such as incandescent light

and pyroelectric sensors equipped with narrow band filters, or IR LEDs and

lead selenide, InGaAs, or InSb photodiodes. Although intended for applica-

tions such as HVAC where measurements to 10,000 ppm are needed, they

do provide precision of 1 ppm with typical drifts of 10 ppm per day. These

boards have a volume of about 10 cm3, consume about 0.1 W, and can run

unattended for years.
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We evaluated three of these inexpensive units for several weeks, with results

described in Appendix A. Although their shortcomings were readily appar-

ent, it seemed to us that minor modifications could improve their accuracy

ten-fold, and that they could be provided with an absolute calibration sys-

tem that would be extremely light weight and low power. We therefore think

that inexpensive NDIR could be brought to a state of maturity that would

be valuable for detecting CO2 concentration changes from sources and sinks,

and could form a network providing a very high density of measurement.

4.2.5 ABET challenge

The Accreditation Board for Engineering and Technology (ABET) requires

engineering students to design and execute a significant project that demon-

strates their ability to meet real world needs. Many industries, foundations,

and agencies offer funding to engineering design teams to come up with the

best solution to a problem of real significance. We believe that the engineer-

ing of a CO2 sensor that measures CO2 concentration to 1 ppm, pressure to

100 Pa, temperature to 0.1 K, and humidity to 1% for a production cost of

less than $500 is feasible, and in fact $200 should be achievable in quantity.

There are three distinct challenges:

• Design a clever labyrinth that achieves long path for small volume. (The

SenseAir unit achieves about 10 cm in a 3 cm length; Appendix A

describes how this could be increased by ×10 for the same size.) This

can be used in conjunction with existing, inexpensive NDIR boards to

improve native precision to ∼1 ppm.

• Design a calibration unit that can deliver CO2 at a known or calibrat-

able concentration to 0.1% accuracy, weighs less than 30 g, and con-

sumes less than 50 mW on average. Appendix A suggests a possible

implementation.

• Build an integrated instrument that simultaneously delivers CO2 con-

centration, P , T , and water vapor, q, to requisite accuracy, logs it with
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an accurate time stamp, possibly a GPS location, with suitable com-

munication: USB, cell phone, etc. This must meet the end goal of

inexpensive mass production.

It strikes us that the pieces to successfully meet this challenge are all avail-

able, and the ingenuity, excitement, and competition of sharp college students

would immediately result in a dramatically capable unit. The industry to

mass produce and calibrate CO2 sensors at the ∼$100 level already exists,

and it seems to us that the innovations that college students would come up

with could rapidly be transitioned to production. If DOE truly were prepared

to make use of thousands or tens of thousands of such units, we predict that

they could be available in less than two years.

4.2.6 Sensor network

Given the existence of an inexpensive, accurate CO2 sensor, there are many

new opportunities for deployment that might be extremely informative for

CO2 fluxes. As always, we are speculating about the most valuable deploy-

ment and density, but we are confident that models can be developed that

will point the way to the optimally informative array of sensors. Of course the

existing, accurate, expensive sensor installations continue to be important,

and can provide the absolute accuracy anchors for a model that assimilates

all the data.

The most obvious deployment strategy is simply high, uniform density of

CO2 measurement near the surface, within the planetary boundary layer in

which CO2 concentrations are the highest. Whether this needs to be high

above CO2 emission and sinks, or whether it is possible to be immersed in

their fluxes is an open question.

We consider cell phone towers to be an interesting place for CO2 sensors.

Obviously they can provide power and communications, and the density is

very high because cell phone range is relatively short, especially in the higher
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frequency bands. In the US there are some 140,000 cell phone towers, i.e. an

average of one per 10 sq km. Although they in fact cluster with population

density, that is also perhaps how CO2 fluxes cluster as well. The rest of the

world is tending to skip over the use of wires for telephone networks, and

the predominance of cell phone communications is relatively higher than in

the US. A CO2 sensor that costs less than $500 could be a trivial part of

the environmental suite of instruments that each cell phone tower already

contains.

Another possibility for deployment would be ships or boats, for example

sail boat masts or commercial shipping. We expect that virtually all vessels

nowadays have GPS units, and most will have a GPS antenna at a reasonably

high location. Installation of a small CO2 sensor with the GPS antenna ought

to be possible. A component of the ABET challenge would be a data logger,

equipped with a few Gbyte of flash memory. At some 100 bytes per sample,

and a sample every 10 seconds, the memory would provide storage for many

years, easily adequate until an opportunity to connect to the internet arises

and to dump to a central repository.

Experience working with the CIA’s Crime and Narcotics Center has taught

us of the difficulty in making 10% estimates of crop identification and vital-

ity from remote sensing. Normalized difference vegetation indices (NDVI)

and other multi- or hyper-spectral methods for vegetation estimation have

proven utility, but the scale of vegetation CO2 emission and absorption is

so large compared to anthropogenic effects that it seems unlikely to us that

remote sensing of NDVI alone will be able to constrain CO2 fluxes at a useful

accuracy. We wonder, however, whether an in-situ CO2 monitor that can ob-

serve the diurnal variation in CO2 might be able to calibrate indices such as

NDVI. Spectral indices are mostly indicative of things like surface density of

chlorophyll, lignin, underlying soil, and water concentration present in plant

cells. The diurnal decrease in CO2 concentration is directly related to the

O2 released in the process of fixing CO2 from the air. A single point sensor

cannot integrate the health and growth of vegetation over a large area, but it
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could potentially calibrate areas that share a common set of spectral indices.

Given a sensor that costs only $200, say, it is worth considering deployments

that end in the loss of the sensor. For example, a balloon, buoy, or floater that

carries a CO2 sensor equipped with an Iridium phone that provided a CO2

measurement (along with time, position, temperature, humidity, pressure,

etc) every 100 seconds for 3 hours could be considered a success by this

metric. We can imagine, of course, a balloon or floater whose lifetime is

measured in weeks, of course, and whose trajectory could cover hundreds or

thousands of kilometers. Balloons can be designed to float at relatively low

altitude, within the boundary layer, or could loft like weather balloons right

into the stratosphere.

There are some 900 upper air stations that typically release two weather

balloons per day. The radiosonde packages carried weigh about a quarter

kilogram, and are in the process of being updated to include GPS receivers.

The radiosondes are mostly lost, so of course they transmit their data back

to the ground. The typical cost of an expendable radiosonde package is a few

hundred dollars, so it is not inconceivable to include a CO2 sensor as part of

the package. The trajectory of weather balloons typically ascends at about

5 m/s to some 30 km before the balloon bursts, following a complex path

according to the winds at different altitudes.

Wind turbines are becoming more and more common, both at a commercial

size and scale as well as more modest units for individual residences. It seems

that this might be another opportunity for siting inexpensive CO2 sensors,

since the turbines are purposely placed at an altitude that feels a wind with

a large fetch, and they can provide power and communications.

Lastly, we do not discount the possibility of individual homeowners being

willing to place a CO2 sensor on a chimney or aerial and provide power and

communications, simply to help understand the sources and sinks of CO2

and their resulting effects on the climate. Reasonably inexpensive weather

stations are also available for less than $200, for example the Oregon Scien-
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tific WMR100, that can log wind speed, direction, temperature, humidity,

pressure, and rainfall to a computer that can report results to the data repos-

itory. Obviously these data will have a wide variety in value, but we suspect

that they could be informative to an appropriate model.

OCO will return some 150 million useful measurements of CO2 over its life-

time, and at a cost of $300M, such CO2 measurements therefore cost $2

apiece. (24 samples per second times a two year mission, diminished by a

half for sunlight, and a fifth for land vs ocean and clouds.) For the cost

similar to that of OCO, one could imagine deploying a network of a million

sensors – one for each 20 × 20 km of the Earth’s land surface. Would this

be more or less valuable than the data from OCO? It requires appropriate

modeling to be able to make the comparison, but we urge the modelers to

“think big” and consider what could be learned from a truly dense array of

sensors for CO2, P , T , q, and possibly wind speed and direction.

4.2.7 Aerial

Appendix B describes possibilities of sampling CO2 concentrations from air-

craft. This could be an extension of the existing MOZAIC, CARIBIC, and

IAGOS programs of measuring CO2 and other gasses from commercial air-

liners, dedicated flights, or a new program similar to the “Open Skies” treaty

that permits over flights to monitor nuclear weapons related activities.

The benefit of measuring CO2 from aircraft is the ability to measure a verti-

cal profile of CO2, and therefore to provide constraints on the very difficult

problem of meteorological convective transport. The shortcoming for com-

mercial aircraft is that their trajectories sample from ground to stratosphere

over a range of about 100 km from airports. It is not yet possible to place a

value on what these concentration trajectories would confer to models.

It is striking, however, how cost effective programs involving commercial

airlines can be. Let us assume that each aircraft charges a full-fare revenue

of $100k per year for carrying a 100 kg instrument package (approximately
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the going rate for freight or passenger transport), and that we allocate $100k

for a very capable instrument able to measure not only CO2, but also H2O,

CO, CH4, O3, NOx, NOy, etc. For the cost similar to that of OCO we find

that a fleet of 1000 aircraft could be equipped, and they cover a net ground

track distance ten times as fast as OCO.

We do not mean by this to denigrate the value of OCO, but merely point

out that the resources being dedicated to the measurement of greenhouse

gasses are vast and can make massive improvements to existing programs.

Exactly how the cost-benefit trade-offs work out need to be understood before

committing resources, but may different opportunities exist.

4.2.8 Ocean

The ocean is a net sink of CO2 and therefore is a crucial component in

the balance of greenhouse gasses. Absorption of CO2 is sensitive to ocean

temperature and state, and the absorbed CO2 leads to acidification, so there

are climate feedback effects involving CO2 and the ocean that are potentially

important. Of course, the oceans border many countries and are therefore a

useful vantage from which to identify and quantify fluxes of CO2.

Appendix C elaborates on the opportunities we see in equipping ocean floats

and gliders with CO2 sensors. The Argo program is already under way to

equip the oceans with ∼3000 floats, and is an opportunity to provide a dense

inventory of CO2 levels in the ocean, if even a fraction of the floats were

equipped to measure CO2 and carbon particulates.

The appendix also considers the possibilities of measuring CO2 from ships

plying shipping lanes, and discusses the delicate issues arising when such

measurements can be used for treaty verification. On the one hand, ships

could automatically register atmospheric CO2 concentration as part of nor-

mal, meteorological measurements, as described above in the section on sen-

sor networks, and the results could provide input to a comprehensive model

that quantifies CO2 sources and sinks as well as meteorology and transport.
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On the other hand, such results might not be accepted as evidence of treaty

non-compliance, and indeed, the situation is unclear as to whether ocean

and atmospheric sampling is allowed outside of territorial waters but inside

Exclusive Economic Zones.

4.3 Isotopes

Appendix D describes possibilities we envision that exploit isotopes of carbon

and oxygen. The most straightforward is measurement of 14C, the radioactive

isotope that is in all living organisms but which has decayed from fossil fuels.
14C exists only at the part per trillion level, and requires relatively expensive

accelerator mass spectroscopy to measure. Since each 14C measurement costs

about $100 it cannot replace more mundane sampling of 12C for quantify-

ing sources and sinks of CO2, but shrewd choices for 14C measurement can

disambiguate fossil fuel emission from other CO2 fluxes.

A different opportunity may arise by measurement of the relative abundances

of the stable oxygen and carbon isotopes: 16O, 17O, 18O, 12C, and 13C. These

can potentially be assayed with a relatively inexpensive residual gas analyzer,

and they offer some clues to the vegetation and combustion origins of CO2.

The ratio of 47CO2 to 44CO2, for example, is nominally 44 ppm, but is affected

by biological pathways and combustion temperatures. (See [37] for a recent

discussion of isotopic tracer methods, as well as use of CO as a tracer).

Ideally one might expect that measurements of CO2 and models could point

to a particular location as a source of CO2 and quantify its flux. Further

discrimination of CO2 into natural versus fossil fuel fractions could then be

assayed with appropriate samples depending on whether models or treaty

requirements deem it important or not. 14C or other stable isotopic mea-

surements are likely to be more useful for detailed diagnosis than for broad

search and mapping of CO2.
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Compared with direct measurements of CO2 concentration, many of these

isotopic tracers have the advantage that plants1 rather than flasks or artificial

sensors can be used as samplers. Plant growth naturally averages isotopic

ratios over an entire growth season, thereby suppressing many short-term

fluctuations, so that a single plant sample may replace dozens of flask or

sensor measurements for the purpose of reducing statistical noise. As noted

in Section 5.2, some modeling approaches (needed to infer fluxes from con-

centrations) average transport processes over atmospheric timescales of order

weeks and hence are naturally compatible with measurements averaged over

similar timescales. Some signatures, such as the 14C/12C ratio, are almost

uniquely associated with fossil-fuel burning, whereas CO2 concentrations vary

for many other reasons, as discussed elsewhere in this report. The prices paid

for these advantages of isotopic measurements are (i) additional processing

steps required to separate the isotopes from one another and from other

components of the plant matter; and (ii) the need to understand and cor-

rect for biases in the signatures due to diurnal, meteorological, and seasonal

modulations in plant respiration and photosynthesis.

4.4 Satellite Measurements of CO2

4.4.1 Introduction

An instrument in orbit can monitor CO2 over wide regions of land and ocean,

larger than would be practical using in-situ measurements, including entire

countries which may or may not be cooperative. Monitoring CO2 from space

involves measuring either the attenuation or thermal emission of infrared light

at the specific wavelengths where CO2 molecules have a large cross section.

This is done either by observing sunlight reflected from the Earth’s surface,

or by using the thermal emission from the Earth’s atmosphere. Several CO2

measuring instruments are already in orbit and another, the Orbiting Carbon

Observatory (OCO-2, Kuang et al. [19] and Miller et al. [20]) is scheduled

1including, perhaps, agricultural exports in the case of non-cooperative countries, pro-
vided that the places where the crops were grown can be adequately determined
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for launch in 2013, as summarized in Table 3. These are all in low Earth

orbits (LEO), and one of the questions we investigate in this section is the

utility of adding one or more CO2 instruments in a geosynchronous Earth

orbit (GEO) or higher.

Table 3: Existing and Imminent (OCO-2 Scheduled 2013) Space-based CO2

Instruments. All are in Low Earth Orbits (LEO).

Method Instrument CO2 Measurement Precision GSD
Reflected Sunlight SCIAMACHY Total Column 3-10 ppm 30 km
Reflected Sunlight GOSAT Total Column 4 ppm 10 km
Reflected Sunlight OCO Total Column 1 ppm 1.5 km
Thermal Emission AIRS Mid-troposphere 1-2 ppm 13 km
Thermal Emission IASI Mid-troposphere 38 ppm ∼100 km
Thermal Emission TES Mid-troposphere ∼5 ppm ∼50 km

There are several challenges that need to be overcome to obtain a useful

measure of CO2 concentration, including:

• Absorption or thermal emission by molecules other than CO2 (especially

H2O, which is much more abundant) must be disentangled.

• The return seen in a given pixel depends on ground albedo and may be

contaminated by other, variable sources such as clouds, aerosols, etc.

• The signal depends on state variables such as pressure and temperature.

• The ground sample distance (GSD) must be small enough to meet the

desired goals, e.g. ∼2 km to measure localized sources/sinks such as

power plant emissions, etc.

• The instrumental stability and calibration chain must support the req-

uisite accuracy and precision.

We discuss these challenges in detail in subsections below. As we will see

two key issues will be a) the high spectral resolution needed to permit good

discrimination of CO2 from other molecules, aerosols, and ground albedo,
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and b) the small GSD needed to permit better spatial resolution of CO2

processes and more frequent seeing through openings between clouds.

In order to achieve good wavelength discrimination for item a), orbiting in-

struments employ one of two methods: dispersing the light over a number of

pixels with a grating spectrometer as in OCO, or instead measuring the wave-

length with an interferometer using Fourier Transform Spectroscopy (FTS)

as in GOSAT. The size and cost of a high resolution, stable spectrograph or

interferometer does not present the impediment for a satellite that it would

for in-situ sampling. On the other hand, the direct illumination across a

defined volume of gas that is key for in-situ instrumentation is extremely

difficult for satellites. (The proposed ASCENDS mission proposal seeks to

do this with LIDAR in the 2020 timeframe.)

For both items a) and b), higher spectral and spatial resolution requires more

collecting area and more pixels or more time to achieve the requisite signal

to noise ratio (SNR) over a given total scan area.

A very important aspect of satellite measurements is that they average CO2

over a significant volume of atmosphere (their “integration kernel”). This

averaging implies that satellites see CO2 concentration changes from local-

ized sources that are an order of magnitude smaller than an in-situ sample

within the boundary layer, and the satellite measurements must therefore

be more accurate. Another challenge is that the trajectory of a LEO satel-

lite, at least, provides only an instantaneous snapshot of CO2 concentration

along the ground track. The inability to average in time implies a suscepti-

bility to unmodeled diurnal or small scale variations in CO2, as illustrated

in Figure 10.

Table 4 lists some of the orbit alternatives available for CO2 monitoring from

space. This is not meant as a complete list, but rather is provided to illustrate

the various trade-offs one can make.
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Table 4: Orbit Choices for CO2 Flux Determination

Orbit Pros Cons

LEO good ground resolution mixes spatial and temporal var.
∼500 km instruments in orbit already variable scattering geometry
90 min period measurements at nadir
Sun-sync circular polar orbit, global coverage mixes temporal and spatial var.
500–1000 km limited range of scatt. geometries revisit ∼16 days (for 10 km swath)
∼ 100 min period measurements at nadir
Geosynchronous near-synchronous observations limited/no access to high latitudes
36,000 km can monitor entire diurnal cycle needs larger aperture, vs. LEO
24 hr period single satellite sees China & India limited longitudinal coverage
“Molniya” long dwell at high latitude further away than GEO
40,000 km apogee some diurnal sampling inclination poor for equator
12 hr period high latitude access limited longitudinal coverage
“Tundra” long dwell at high latitude limited area coverage
46,000 km apogee fixed scattering geometry further away than GEO
24 hr period good diurnal sampling inclination poor for equator
L1 perpetual dwell over illuminated area limited access to high latitudes
1,500,000 km fixed illumination geometry much poorer ground resolution and
Stationkeeping whole-Earth, diurnal sampling much lower bandwidth than GEO

4.4.2 Measuring atmospheric CO2 by reflected sunlight

All present and planned satellite measurements of CO2 absorption utilize the

same basic measurement strategy exploiting the 3 different wavelength bands

shown in Figure 16. The weak CO2 overtone band at 1.6 μm, which has siz-

able (30%) column absorption and nearly linear sensitivity to CO2 column

density, serves as the main CO2 sensor. The weak O2 M1 absorption band at

0.76 μm (the A-band) calibrates air pressure and temperature. The stronger

overtone CO2 band at 2.06 μm calibrates the water vapor background and,

together with the 0.76 μm band, addresses wavelength-dependent variations

of surface albedo and airborne cloud and aerosol particles. Further discrim-

ination against the latter effects is provided if the instrument wavelength

resolution is sufficient to resolve the individual components of the bands,

particularly the 1.6 μm band and thereby “chop out” the more uniform back-

ground.
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A key aspect of the transitions at all three wavelengths is their inherently

good line spacing that permits individual line components to be seen. Each

transition has the same simple band structure; two rotational branches with

resolved lines formed by ΔJ = +1 and −1 transitions between ground and ex-

cited state rotational levels, with rotational spacing of about 1 cm−1 (30GHz),

and widths of individual lines in the lower atmosphere determined by pres-

sure broadening of about 5 GHz. The atmospheric temperature determines

the energy of the rotational levels occupied and hence the number of rota-

tional lines that appear in the spectrum. (The change in spacing of these

lines seen in the figure is due to the difference in rotational constant in the

ground and excited states.) With such resolution, as noted above, combining

the 3 lines enables the state variables such as temperature to be determined,

as well as a host of modeling parameters such as the extra broadening due

to water vapor, the difference in pressure broadening vs. the change in at-

mospheric pressure with height, the effects of line saturation, and the albedo

and aerosol contributions between lines.

Satellites are typically designed to obtain adequate SNR from the reflection

off of ground. The reflection signal from water at SWIR wavelengths is

only 2%, a factor of 10 lower than sand/soil and a factor of 3–5 lower than

vegetation. Over ocean the plan for OCO is to use sun-glint mode to get

Figure 16: This figure plots the transmission through one atmosphere, in the
spectral regions used for monitoring CO2 and other gases from space, using
reflected sunlight. SOURCE: [22]
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adequate signal. This strategy is shown in Figure 17. OCO will be able to

switch between nadir and sun-glint modes, and after initial testing in space

may be programed in favor of one or the other as the dominant mode.

Figure 17: This figure shows the LEO satellite CO2 monitoring coverage for
nadir viewing over land and sun-glint viewing over ocean.

The retrievals outlined here, either over land or ocean, require validation for

each satellite. For this purpose a validation network, called the Total Carbon

Column Observing Network, TCCON, is in place, operational, and has been

calibrated to the WMO Standard [38]. Target observations over TCCON

sites will be a critical component of a validation strategy for future satellite

instruments.

4.4.3 Potential for monitoring power plant emission

In a treaty environment, an important goal for future generation satellites

is to constrain anthropogenic CO2 emissions by detecting and quantifying

strong, localized CO2 point sources such as power plants (PPs). Although

OCO will have the requisite GSD and CO2 sensitivity, it will not normally

have sufficient swath width to capture the usual factory plume. In order to

achieve this, the results of an analysis by Bohvensmann et al. [18] indicate

that the single ground pixel CO2 column retrieval precision needs to be bet-

ter than 1% as this is the expected order of the CO2 column enhancement

relative to the background. A number of other criteria need to be fulfilled, in

particular the satellite’s swath width needs to be sufficiently large to achieve
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frequent mapping of PPs and their surroundings, and the GSD must be small

enough (<2 km) not to dilute the PP plume and to have a good probability of

a cloud-free scene. (Miller et al. [20] estimate this probability from MODIS

observations to be approximately 35% (GSD/1km)−0.5.)

Bohvensmann et al. (2010) put forward a promising satellite concept called

CarbonSat that has slightly less spectral dispersion (0.11 nm vs 0.08 nm),

GSD (2 km vs 1.7 km), and SNR than OCO, but which has a 500 km swath

width (compared to 10 km for OCO). Shown in Figure 18 is a simulated

retrieval of a PP plume by CarbonSat. An emission of F = 13.00 MtCO2/yr

was used to generate the data seen by CarbonSat. The inversion result was

F = 13.22 MtCO2/yr.

Figure 18: This figure shows the retrieval of a power plant plume by carbonsat
as described in the text (from Bohvensmann et al. [18])
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CarbonSat is proposed as a LEO satellite, but it is important to note that

only 0.5 cm aperture is needed to capture enough photons from the 2 km

GSD for the required SNR. Exactly the same spectrograph could be flown at

GEO with 25 cm aperture fore-optics with exactly the same capability, except

that at GEO the satellite could scan or dwell where ever is most informative,

over the ∼ 10 hour span of daylight. The CarbonSat proposal is somewhat

notional and there are other factors besides raw photon collection that drive

instrument design, but any real CarbonSat design could also be deployed at

GEO with fore-optics that are ×40 larger. Inasmuch as the spectrographs

of SCIAMACHY and OCO are about 0.5 m3 and 150 kg, it seems that

CarbonSat would be about the same and therefore considerably larger and

more massive than any required fore-optics. We discuss the relative merits

of GEO versus LEO at greater length below.

4.4.4 Thermal IR measurements of atmospheric CO2

An alternative way to measure atmospheric CO2 from space is by its thermal

emission. The most precise results have been obtained using the Atmospheric

InfraRed Sounder (AIRS, concentration retrievals discussed by Chahine et al.

[21]) launched in 2002. AIRS is a cross-track scanning grating spectrometer

with 2378 channels and spectral resolving power of about 1200 extending from

3.7 to 15.4 μm with a 13.5 km field of view at nadir. The AIRS spectrum is

shown in Figure 19. AIRS utilizes a companion microwave sounder, AMSU

to retrieve temperature, etc. in the presence of clouds on a horizontal scale

of one AMSU field of view or 45 × 45 km at nadir, the equivalent of 3 × 3

AIRS footprints.

The directly measured quantity in AIRS is the upwelling radiance at the de-

tector for all the channels in the spectrum. AIRS retrieves variables of inter-

est Xi (for example the mixing ratios of atmospheric gases) by the method of

“vanishing partial derivatives”. In this method, for independent variables Xi,

the values selected are those which make the partial derivatives ∂G(n)/∂Xi

vanish individually. Here the residual G(n) at the nth iteration is defined as
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the sum of squares of the difference between the measured radiances and the

radiances derived through forward calculations using the retrieved geophys-

ical state of the atmosphere. Therefore, even though the observed spectra

may not differentiate between the contributions of individual lines, the partial

derivatives can.

For a given gas, a judicious choice of wavelength range is made to obtain the

optimum line-strength, because the interaction probability along the column

determines the “averaging kernel” for thermal emission measurements. For

a strong enough line that the radiation is absorbed in much less than the

height of the atmosphere, the averaging kernal is located near the top of the

atmosphere, whereas for much weaker absorption the averaging kernal moves

down towards the earth surface, In the case of CO2, weighting functions in

the troposphere are shown in Figure 20 for three wavelength ranges:

700–720 cm−1 with moderate absorption emphasizing the mid troposphere.

Figure 19: This figure plots the transmission through one atmosphere, in the
spectral region used by AIRS to observe thermal emission from the atmo-
sphere and the Earth’s surface.
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These measurements have been carried out already.

≤700 cm−1 with strong absorption emphasizing the upper troposphere.

These measurements are planned for 2010.

740–790 cm−1 with weak absorption emphasizing the lower troposphere.

These measurements are planned for 2011.

Figure 20: This figure plots the weighting curves that can be used by AIRS to
observe CO2 concentration at various heights in the troposphere.

It is noteworthy that the mid-tropospheric CO2 results agree with aircraft

data in regions where the measurements overlap (Chahine et al. [21], Mat-

sueda et al. [23]), and AIRS obtains the same 5 ppm seasonal variation

to 1.2 ppm. The thermal IR thus offers an important means of obtaining

global CO2 concentrations in the mid troposphere (and likely in the upper

troposphere too), that can be usefully compared with GOSAT and OCO-2

measurements of total column CO2. Thermal IR also offers the important

advantage of providing measurements both day and night. It remains to be

seen with what precision AIRS will also be able to measure the lower tropo-

spheric CO2. It is thought that it will be possible to obtain the temperature
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accuracy needed to reject the surface to the level of 2 ppm CO2, but rejecting

water vapor may prove more difficult.

Thermal IR measurements of CO2 should be considered as an important

option for a GEO orbit which would offer similar advantages in coverage as

in the case of reflected sunlight absorption measurements already discussed.

4.4.5 The Merits of geosynchronous orbit

We find the idea of monitoring CO2 from geosynchronous orbit to have nu-

merous advantages. One of the most important is that this approach largely

decouples the temporal from the spatial structure functions of CO2 variabil-

ity. This ability to take a series of instantaneous “snapshots” of CO2 across

an entire country provides a time series of maps of columnar concentration.

We strongly suspect that this data set will be less sensitive to systematic

errors in modeling and the inversion from concentrations to fluxes, than the

spare spatio-temporal sampling from LEO instruments. It is important to

remember that the repeat interval at which nadir-looking LEO instruments

return to the same patch of ground is of order 15-20 days, depending on orbit

details (even assuming cooperative clouds).

While the decoupling of temporal and spatial structure is the principal ad-

vantage of a GEO satellite there are several additional important advantages:

• GEO offers the option, unavailable at LEO, of revisiting important lo-

cations frequently on time scales of hours or days, and looking at them

longer. As already noted, this option would be key to monitoring power

plants and other sites with anthropogenic sources of CO2.

• Since a number of LEO instruments exist already, with plans to be

augmented soon by OCO-2, the GEO instrument would provide a nicely

complementary spatio-temporal sampling function. For example, the

high latitude regions where a GEO system observes at high slant receive

dense coverage from LEO systems in nearly polar orbits.
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• Launches of communication satellites into GEO orbits happen at the

rate of about one per month, so we suspect that a “piggyback” instru-

ment could possibly be a cost-effective approach, sharing the power and

communications infrastructure from the comsat bus.

• It goes without saying that simultaneous data are extremely powerful for

improving systematic errors. Equipping a GEO satellite with both a see-

to-ground CO2 sounder at 1.6μm as well as an IR imager akin to AIRS

that collects CO2 measurements from IR emissivities is a combination

that should be carefully considered. Measurements of GHG other than

CO2 would also be advantageous.

There is no technical reason that a satellite cannot perform as well or better

at GEO than at LEO. For example, consider what would happen if OCO -3

were flown at GEO (OCO-GEO) without any modification whatsoever (other

than pointing mechanism, bus, communications, etc., of course). OCO-2’s

detector pixels map to a 64 m GSD on the ground at LEO, which would

become 3.2 km pixels at GEO. These pixels are normally binned by 20 in the

spatial direction at LEO, but could be returned unbinned from GEO, for a

net, instantaneous FOV of 3 × 500 km. The OCO optics are not optimized

for imagery in the spatial direction, so the GSD would be blurred to ∼10 km

in the spatial direction, but we comment on that issue below.

Since OCO-GEO would be looking at the same surface brightness Earth as

OCO-2, it would achieve the same SNR per pixel in the same exposure time

of 0.33 sec. However, the pixels would not be binned by ×20 in the spatial

direction, so the exposure time (or number of added exposures) would have

to be increased by ×20 to achieve the same SNR per GSD. OCO-GEO would

therefore observe some 250 km2 per second, as compared to OCO-2’s 70 km2

per second. With a 10 km2 pixel the probability of OCO-GEO obtaining a

random cloud-free sounding is 18% instead of 25% for OCO-2 at LEO. Of

course OCO-GEO can direct its observation to locations that meteorological

satellites verify are cloud-free, so in principle OCO-GEO can have a very

high duty cycle for successful soundings. OCO-GEO pixels over ocean can
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be binned by 3 × 3 to obtain adequate SNR with a 10 km GSD.

Continuing this example, there are a number of obvious improvements that

could be made to “OCO-GEO” to make it an even more capable instrument

at GEO.

• Reoptimize OCO’s optics to perform better in the spatial direction so

that the spatial pixels are unblurred.

• OCO uses the H1RG devices that are ×10 lower noise than the nominal

detectors assumed by CarbonSat, but only uses ∼190 pixels in the spa-

tial direction. Fill the entire 1024 pixels for a swath width of 3000 km.

• OCO’s telescope aperture is 11 cm. Double it to 22 cm for a 1.6 km

pixel size and a swath width of 1500 km.

• (More challenging) Increase the aperture to 25 cm and decrease the f-

ratio of the spectrograph camera to f/1.6 for an exposure time reduction

of 30%.

• (More challenging) Use H2RG detectors for OCO-GEO and fill the en-

tire detector for a swath width of 3000 km with 1.6 km pixels. The

additional pixels in the dispersion direction could be used for CH4 at

1.66 μm or perhaps imaging both polarizations separately.

The first three (minor) modifications would lead to a collection rate of 350 km2/sec

to 1500 km2/sec for 1.6 km or 3.2 km GSD, i.e. the area of the United States

in 1.5–6 hours. The latter two modifications would provide 1.6 km mapping

of the US in about 1 hour. There are many other optimizations such as slit

width and spectral resolution that can decrease exposure times further.

This example is by no means the best that can be achieved with a GEO

satellite that uses a spectrograph, and by this example we are not literally

advocating that the OCO-III instrument be flown at GEO. It does illustrate,

however, that measuring CO2 from GEO is technically no more difficult than

from LEO. In many ways GEO is a simpler location to design for because the

portion of Earth at reasonable slant angle only subtends about 10 degrees,
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and that is comparable to the efficient range of blaze angle from a grating.

Therefore there is a wide design space for a system with wide swath and

efficient spectrograph. In addition, the radiance from Earth is high enough

that a 25 cm aperture at GEO is adequate to obtain the required SNR

at high dispersion, ∼2 km GSD, and ∼1 sec exposures. Since the high

spectral resolution requires a ∼10 cm beam onto a grating anyway, there is

no advantage in being closer to Earth — this is why OCO’s aperture is 11 cm

and why OCO has such high magnification and therefore bins by ×20.

A grating is not the only way to obtain a spectrum. Duren (2010)[24] de-

scribed the PanFTS instrument for the GEO-CAPE mission proposed to

NASA. This ambitious instrument covers 0.26 μm to 15 μm with 7 km nadir

GSD and 0.05 cm−1 (0.03 nm at 1.6 μm) spectral resolution. (A narrow field

channel has 0.25 km GSD but far too little spectral resolution to measure

CO2.) It can collect a 900 × 900 km2 image every 67 seconds, for a coverage

rate of 12000 km2/sec (600 km2/sec if fore-optics were changed to provide

1.6 km pixels).

The objectives of such a mission would go beyond what we consider in this

report and would include measuring species such as pollutants (O3, NO2,

NH3, SO2, CO, etc), and greenhouse gases (CO2 CH4, N2O, CO, etc). The

notion of doing precision trace gas monitoring from GEO has been discussed

by Burrows et al. [27] and Orphal et al. [31]. The GEO-CAPE and PanFTS

mission, as proposed, is “something for everyone”, does not have the technical

readiness level of OCO, and is not particularly optimized for CO2 or other

GHG measurement. However, it would be straightforward to optimize for

GHG measurement in support of treaty verification, and the simultaneous

use of SWIR for detection of CO2 absorption and thermal IR for CO2 thermal

emission is a potent combination.

We believe that, on balance, the properties of GEO enable powerful oppor-

tunities for classes of CO2 sounder design that are not available at LEO. We

summarize the advantages and disadvantages of GEO vs. LEO. Advantages

include:
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• A piggy-back ride on communications satellite lowers cost, and provides

essentially infinite bandwidth and power.

• Ground sample size is largely dictated by the number of detector pixels

flown and the desired revisit cadence.

• Long exposure times or binning is possible over ocean.

• Synoptic coverage possible, enabling detection of diurnal CO2 varia-

tions, peeking through clouds, monitoring weather changes that move

CO2 around, monitoring CO2 sources and sinks on a timescale that is

meaningful.

• Geosynchronous orbits are possible that drift up and down in latitude

(e.g. “tundra orbits”), with the potential of providing alternate view

angles at the satellite’s longitude, although it may make the communi-

cations aspect more problematic.

Disadvantages include:

• A GEO satellite views ground pixels off-nadir. We note however that a)

LEO satellite systems successfully obtain CO2 concentrations in the face

of off-nadir solar illumination, b) pixel size is not much smaller than the

atmospheric scale height so the integration volume is not greatly larger

than the GSD, and c) a wandering geosynchronous orbit could alternate

nadir views at each latitude.

• A GEO imager only sees one third of the world at once, and three would

be required for global coverage.

• High latitudes are basically invisible (although we note that that is

where LEO satellite coverage becomes very dense).

We believe that a GEO sounder offers an extremely important complement

to existing and planned LEO satellites. Modelers need to weigh in on the

relative value of the temporal coverage and other GEO advantages, and make

recommendations. In parallel, satellite designers should carry out detailed
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calculations of the accuracy expected from off-nadir imaging and changing

sun angle, and need to think how to optimize the design of a GEO imager.

4.4.6 L1 monitoring of CO2

It is also worth considering placing a satellite at the Lagrange point, L1,

about 1.5 million kilometers towards the Sun from the Earth. Being 40 times

more distant than GEO, it is not practical to maintain the same ground

sample distance with the same f-ratio, so some combination of increase of

ground sample distance and f-ratio would have to be implemented.

If we imagine for sake of argument that our “OCO-GEO” example were

equipped with an 0.8 m telescope and placed at L1, it would have a 20 km

ground sample distance (and full-planet swath) but otherwise be the same

in terms of exposure time and CO2 measurement accuracy. Available down-

link bandwidth would be significantly less than at GEO, which might place

additional constraints on operations.

However, this satellite would stare continuously at the sunlit face of the

Earth, and it would not have the foreshortening of a GEO vantage, so all

points on the Earth at latitudes lower than ∼50 degrees would be visible for

approximately 6 hours, from 9 AM to 3 PM every day. The cloud contami-

nation within 20×20 km is potentially a serious issue (Miller et al. [20] assess

the probability of cloud-free at 12%), but a scan of the entire sunlit face of the

planet would take less than an hour, so a given spot has 6 chances per day of

being seen without cloud. As with a GEO satellite, CO2 over dark ocean can

be easily measured by simply binning 3×3 soundings. Of course we think of

an L1 satellite as a complement to pre-existing LEO (and GEO) satellites,

but we want to emphasize that relatively low spatial resolution required for

CO2 measurement can be obtained from many different locations.

The “Deep Space Climate Observatory” (Triana) is a $100M satellite pro-

posed in 1998 to view Earth from L1 with an imager and radiometer for

climate monitoring purposes. The imager incorporates a 30 cm telescope
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and 10 channels from 317 nm to 905 nm to obtain 8 km nadir GSD over the

face of the planet every hour. It has been on hold because of NASA prioriti-

zation and its perceived scientific value (c.f. [39]), but it serves to illustrate

that L1 is an attainable location and that many of the practical difficulties

can be addressed.

4.5 Findings and Recommendations: Direct Measure-

ments

In this section we have reviewed the state of CO2 measurement, both in-

situ and satellite. We have tried to elucidate costs and values for different

methods and deployments, but we find that we are not able to carry out

a real recommendation of an “optimal market basket” because models do

not yet exist to quantify flux uncertainties for a given set of measurements.

We are optimistic that such models can be brought to some maturity in a

relatively short period of time, which we discuss in the next section.

Nevertheless, there are two opportunities that to us appear to have a certain

pay-off. The first is development of a low cost, 1 ppm accuracy sensor and

calibration system that could be very widely deployed and networked. The

second is CO2 measurement from geosynchronous orbit or beyond. Neither

of these is necessarily superior to the existing, sparse, in-situ networks or

satellites in LEO, but as a complement and next step, we find them com-

pelling.

To illustrate the trade-offs we face in establishing an optimal network of in-

situ sensors, we observe that the following options would each be available

for an investment of around $20M (7% of the cost of the OCO reflight):

1. Acquiring and deploying about 100 high-accuracy cavity ring-down CO2

sensors. This would roughly double the global sampling network of the

existing Carbon Tracker sites.

2. Equipping 100 commercial or military aircraft with high quality instru-
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mentation and paying one year, full freight fare. A single airliner flies

about a million miles per year, so this is some 160 million km of ground

track measurement per year, almost exactly the distance that OCO will

cover per year.

3. Equipping 500 ARGO floats with CO2 and C particulate sensors for

directly evaluating ocean sinks and source of CO2.

4. Acquiring 1,000 stabilized NDIR sensors akin to AIRCOA, with <1 ppm

accuracy. This would amount to about one hundredfold expansion of

the Rocky RACCOON network.

5. Designing, acquiring, and installing a network of 20,000 inexpensive,

few-ppm accuracy sensors. Options include cell phone towers, (possibly

sacrificial) balloon flights, ships, or other favorable locations.

Our suspicion is that a much higher density of sampling may not improve

our understanding of the overall global burden of CO2 and climate change,

but will be extremely informative for identifying and quantifying the sources

and sinks of CO2.

We advocate investment in developing a low cost, high accuracy CO2 sensor

right away (with auxiliary measurements, attendant communications, and

assimilation). Investment in understanding the various deployment oppor-

tunities and costs right now is worthwhile — it is possible to ascertain the

costs and what information will be delivered with some accuracy right now.

For satellites, we find that there are no fundamental technical roadblocks

to deployment at GEO or beyond. Indeed, GEO may offer some synergies

with the Com-sat industry that provide financial leverage for greenhouse gas

monitoring capabilities. The temporal and spatial coverage afforded from a

GEO (or beyond) vantage point seem to be a most valuable complement to

LEO instruments such as SCIAMACHY, AIRS, and OCO.

We therefore recommend immediate design studies of new or adapted satellite

concepts for GEO or other high orbits, and exploration of Com-sat partner-
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ships, with a goal of launch in 2018 or earlier. The outcome again should be

a clear identification of the capabilities and costs of different configurations.

In a few years time, with appropriate investment in models it should be possi-

ble to understand the value of all the various opportunities and then to make

an investment that is optimal for the purposes of determining greenhouse

case fluxes and treaty verification.
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5 MODELING/ASSIMILATION/INVERSION

5.1 The Flux Inversion Problem

5.1.1 Introduction

Whether carried out by in situ sensors or by satellite, measurements of green-

house gasses yield values of the concentration averaged over some instrument

response profile. Profiles can be local in space (point sensors) or spatial-

averaging (remote sensing pixels), local in time or temporally averaging. The

first task, then, of any emission-monitoring program is to infer fluxes of gases

from these concentration measurements. We have already discussed some of

the issues involved in the use of models to infer fluxes from concentration

measurements in Section 4.1.2.

In this section, we focus on the state of the art in carrying out the aforemen-

tioned flux inversion. Before proceeding, it is worth contrasting two different

uses of these algorithms. In a tracer release scenario, there are assumed to be

no natural sources of the material in question; often we can also assume we

have good estimates of the sinks, either occurring in the bulk (e.g. natural

decay of radioactive tracers) or by deposition onto the ground. In contrast,

many of the important greenhouse gases have large natural sources and sinks.

This means that calculating the fluxes is only the first step in an overall effort

to determine changes in anthropogenic sources. In particular, one will have

to develop a good understanding of natural variability so as to be able to

place bounds on specifically anthropogenic fluxes as opposed to total fluxes.

The simplest formulation of the flux inversion problem is arrived at by as-

suming that all transport processes are linear in the relevant concentration

variables. Under most cases, this seems to be a reasonable assumption as the

most critical processes such as advection by winds and mixing in the vertical

direction are indeed linear. Then, a vector of measurement μi, i = 1, Nm is
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typically taken to be

μi =
∑

a

Hiaσa + εi (5-4)

where σi is a set of Nf fluxes (which in principle should also include initial

data at the beginning f the monitored period), εi are measurement errors

and H is a Nm ×Nf matrix which summarizes how sources are connected to

measurements via transport equations. An example of the output from this

type of calculation is shown in Fig 21. The indices respectively indicate how

many measurements take place and run over both spatial locations and time

values. Source indices represent unknowns and again indices encode both

spatial location and time period. To give one concrete example, in a model

with simple diffusion, an averaged concentration over a region of volume V

centered at 	x and temporal duration T centered at time t, would be given

for a single source as∫
V

d	x′
∫

T

dt′
∫

d	y

∫
dτ G(	x + 	x′ − 	y; t + t′ − τ ) σ(	y, τ ) (5-5)

where G is the usual Greens function for an advection-diffusion equation

∂G

∂t
− D	∇2G + 	v(x, t) · 	∇G = δ(	x− 	x′)δ(t− t′) (5-6)

Here 	v(x, t) is the advecting velocity.

Before writing down the solution of the inversion problem, it is worth men-

tioning the issue of spatiotemporal discretization. In order to solve the trans-

port question, space and time must be discretized. The space and time scales

chosen for this discretization need have no direct connection with the space

and time scales chosen for the measurements and/or the fluxes being solved

for, other than the obvious requirement that one clearly cannot hope to re-

solve fluxes on scales smaller than the solution grid. We will return later

to the issue of how various choices of discretization can affect the inversion

outcomes.

The standard Baysian approach to finding fluxes relies on minimizing the

error by proper choice of the σa subject to a priori information. A standard

assumption is that the εi are normally distributed with covariance R. If
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Figure 21: Footprint emission sensitivity in picoseconds per kilogram ob-
tained from backward calculations using an advection-diffusion model aver-
aged over all model cal for all stations and for the entire year 2008. Mea-
surement sites are marked with black dots. from [40]

one also assumes that the prior distribution of the sources is Gaussian with

covariance B, we must minimize

(μ − Hσ)T R−1 (μ − Hσ) + σTB−1σ (5-7)

This assumes that the prior distribution has zero mean, but this condition

can easily be removed. The solution of the problem is

σest = BHT
(
R + HBHT

)−1

μ (5-8)

and the variance of the estimate is found to be

Vest =
(
B−1 + HTR−1H

)−1
(5-9)

has clearly been reduced from B by means of the measurements.
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One can extend this framework to account for prior distributions that are not

Gaussian. This is definitely important for the tracer release problem since the

sources must be positive and occur at only a few isolated sites. Bocquet and

co-workers have shown how one can extend this Bayesian framework to allow

for such non-Gaussian processes using a maximum entropy principle [44].

Details are available in a series of publications. Others seem to use ad hoc

procedures such as manually adjusting fluxes to zero if the algorithm gives

negative values [40], or parameterizing the fluxes in such a way as they are

intrinsic positive (taking the flux to be expσ, for example [45]). This latter

approach has the distinct disadvantage of making the problem non-linear in

the flux variable and making error estimates much more difficult.

An extensive discussion of the formalism for data assimilation and modeling

inversion is given in Appendix E.

5.2 Discretization Issues

The aforementioned framework is used in the greenhouse gas monitoring

community in a variety of manners. In some works, data is taken from ex-

isting ground monitoring networks or from existing satellites and inverted to

determine actual fluxes. In a second protocol, forward models with assumed

sources are used to create artificial data for proposed systems and used to

evaluate their added utility in reducing uncertainty. It is critical to realize

that neither of these two uses typically investigates modeling errors, for ex-

ample in the vertical transport physics, perhaps due to insufficiently accurate

weather information. We will return to this issue later and assume for the

moment that the model, as written down as a partial differential eqation, is

accurate.

An early example of this type of study is that of Rayner and OBrien [41].

Here, the goal was to assess the utility of a nominal remote sensing as com-

pared to the global-view monitoring network. The authors assume that the

flux can be discretized into a total of 26 regions (covering the entire globe); a
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Figure 22: The 26 region flux inversion grid (polygons) and the 56 mainly
surface stations. Stations are marked by dots. The shading represents the a
priori standard deviation of sources (GtC yr −1). From [41].

picture of their discretization is shown in Fig. 22. In the time domain, their

movements are averaged over one month and similarly the fluxes are taken

to be constant over each month.

In this paper, the authors are concerned with the needed accuracy of satellite

measurements so as to reduce flux inversion uncertainty. To this end, they

assign initial flux errors which are chosen to be of order 1.2 GtC/yr. (over

land regions) and similar values over different oceans. They first show, using

the aforementioned formulas, that the ground-based measurements appeared

to reduce the uncertainties to approximately .5 GtC/yr. over North America,

slightly worse over Europe. These numbers need to be compared to the total

fossil fuel based emissions from Europe estimated to be around 1 GtC/yr.

Clearly, this resolution, even if taken at face value, means that the ground

system could not detect a change in emissions of less than 50-100%. This

falls far short of what might be desired.
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It is crucial to recognize that the limitation revealed by this analysis is not due

to what normally would be called measurement error. The data uncertainty

in the ground sensors in the neighborhood of 1 ppmv are, as discussed in

this paper, much larger than the precision of the instruments. Instead, the

estimated error comes from the extreme variability of the actual measurement

data which then needs to be averaged over one month to get even close to

something that can be meaningfully compared to model predictions. The

failure to reproduce short time scale variability with a coarse-grained model

is hardly surprising. First, we have assumed constant fluxes over very large

regions and over long periods of time. This is mismatched to data taken

at isolated points in space and with a short averaging period. An explicit

example of this mismatch can be seen in the work by Stohl [40] on inverting

for the sources of hydrochlorofluorocarbons (HCFCs) in east Asia; the best

fit to emissions on a 10 x 10 degree cannot reproduce the spike in the actual

data (see Fig 23). This is attributed both to the coarseness of the emission

grid and the exactly matched coarseness in the model, which also assumes a

10 x 1 0 grid.

In general, then, we have several choices that must be made. At the most

basic, we have already mentioned that the transport equations must be dis-

cretized. In practice, discretization is determined by available computational

power and available meteorological data. There is no guarantee that for any

given problem, these artificial constraints will coincide with the actual de-

sired outcome, namely that the solution of the discretized problem be close

enough to the behavior of the actual physical system being modeled (recall

that we are assuming that we have an accurate continuum model). This is

a well-known issue in fields such as computational fluid mechanics, where

subgrid models have been developed to try to ameliorate the problems en-

gendered by solving the relevant flow equations on coarse grids that cannot

properly resolve the physics.

To explain the problem, let us imagine we only care about emissions over

country-scale regions. One might theoretically imagine that solving the trans-
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Figure 23: HCFC-22 time series for monitoring stations at (a) Ochi-ishi, (b)
Shangdianzi, (c) Gosan, and (d) Hateruma. For every station, the lower pan-
els show the observed (black lines) as well as the modeled mixing ratios using
the a priori emissions (green lines) and the a posteriori emissions (red lines),
the a priori baseline (cyan lines), and the a posteriori baseline (blue lines).
The upper panels show the model errors based on the a priori emissions
(green lines) and the a posteriori emissions (red lines). The spikes at Shang-
dianzi cannot be captured as the measurements are too close to large sources
in Beijing and hence are subject to large fluctuations caused by small-scale
transport events. From [40].
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port equation on say, a 30 x 30 grid would be good enough to detect relevant

flux sources. But, there is no guarantee that the transport from one coarse

cell to a neighboring coarse cell is predictable from just 30 x 3 0 degree infor-

mation about concentration, wind, etc. Subgrid correlations between wind

velocity and concentration could easily lead to cell to cell transport even if

the mean value of concentrations in the two cells on the coarse scale are

equal. Such effects should appear, at the very least, as stochastic terms in

the model, but the real issue is the extent to which the structure of the

fluctuation depends on the fields themselves (multiplicative as opposed to

additive noise) and can lead to systematic problems. It is clear, also, that

similar remarks apply in the time domain, where substep correlations can

lead to biases in the transport predicted by the coarse-grained model.

The second level of discretization involves the size of the inferred fluxes. In

general, it seems like a dangerous notion to take this scale to be the same

as that of the model discretization; this does not allow any determination

of whether or not the space-time characteristics of the data can actually

be explained by slowly-varying fluxes. Results for fluxes would be more

convincing if one had the freedom to vary the flux discretization within a

fixed model discretization and then discover the relevant scale of the source

distribution, rather than impose it from the start.

In practice, the amount and type of measurement data places constraints on

the flux inversion. First it is reasonable that one will not get a meaningful

inversion without having, say, an order of magnitude more data points than

unknown flux variables. In the work of Stohl [40], 11706 observations were

used to determine 1377 unknowns. But, this is not just a numbers game.

Certain types of fluxes will not leave any significant trace on certain mea-

surements, and conversely if there are some variables where net effect is not

seen in any significant subset of the data, the inversion will be ill-conditioned.

For other fluxes, the algorithm should just return a fitted value determined

by the a priori input information. Thus, producing an emission sensitive plot
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of the type already shown in Figure 21 is an essential part of the process and

should have been calculated for any proposed system.

The counting of measurements is thus somewhat tricky. Measurements taken

over very short intervals are not really independently useful if the model uses

meteorological data averaged over much longer time scales. Measurements

separated by short distances will not give independent information about

fluxes being determined at a much coarser level of discretization.

This short excursion into the many inter-woven issues involved in the flux

inversion problem should indicate that the situation can be quite complex.

This is perhaps an area that could be sorted out with the help of focused

computational studies in which large- scale resources could be used to create

a fine-grained simulation which could then be investigated by a series of

coarse-grained reductions. This type of study would decouple the problem

of model accuracy with that of computational and measurement resolution.

As far as we can tell, the community has not yet undertaken such studies.

5.3 Satellite Measurements

As already mentioned, one of the uses of inversion has been to understand

how proposed systems could be used to reduce emissions uncertainty. In the

paper already mentioned by Rayner and OBrien [41], they concluded that a

nominal satellite system could be competitive with ground level observations

if measurement errors would be less than a few ppmv. A more detailed study

focusing on the specific OCO measurement footprint [43] led to the conclusion

that the error would indeed be reduced to .1 to .2 Gtc/yr. over regions the

size of Europe. If this is true, they would indeed to good enough to monitor a

20% change in atmospheric emissions, assuming of course a constant natural

background. They predicted significant reduction in the error, by about a

factor of 2, over India and China (see Figure 24). But, this study was carried

out on a rather coarse grid (3.750 x 2.50) and no attention was paid to the

extent that models at this scale may not be all that predictive. In fact,
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Figure 24: Fractional error reduction of the monthly mean grid point CO2
surface fluxes. The error reduction is defined as (1- σa/σb), where σa is
the posterior error standard deviation and σb is the prior error standard
deviation. From [43].

it would have been impossible to do so, as they took their meteorological

data from GCM models rather than from weather service observation. This

limited the resolution to GCM scales.

One message that is unmistakable in the paper by Chevallier et al [43] and

the work of Rayner and others [41] is the reliance on a priori estimates.

If the goal of a carbon monitoring system is to ensure 20% measurement

accuracy without any additional input, none of these papers offers much

encouragement. If the goal is to test deviations from inventory reports that

can be mostly trusted, and if the models are believed to be fairly reliable,

one could conclude that this is achievable in the reasonably near-term.

5.4 Systematic Model Errors

The major uncertainty for GHG emissions estimates is the extent to which

we can believe the transport models developed by the atmospheric science

community. This issue becomes exacerbated when schemes that couple car-
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bon monitoring to full GCM simulators are proposed, as the issues here are

even more uncertain. We will assume instead that meteorological data is

being input from separate measurements (or at least that the GCMs are be-

ing heavily constrained by data assimilation from widespread measurements)

and focus instead on the transport part.

Figure 25: History of values of the Hubble constant. Obviously, early error
estimates were totally misleading as to the real nature of the uncertainty,
which was not statistical.

The fact that the statistical errors can completely misstate the actual uncer-

tainty in the inferred value of a parameter is, unfortunately, well known. In

the physics community, perhaps the most egregious example of error under-

estimates occurred during attempts to evaluate the Hubble constant relative

to the expansion of the universe. (see Figure 25.)

A simple example of how meteorological errors can lead to totally inaccu-

rate fluxes is provided by vertical transport. Assume that a particular mea-

surement system is most sensitive to concentration at a specific height, for

example 100 m above the ground. It makes a huge difference, then, if the
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model predicts that fluxes from the ground will in fact be advected up to that

height or not. Thus, ground sensors in the tropics will underpredict sources

if strong vertical mixing is not properly taken into account. One might hope

that satellite measurements with that vertical averaging would circumvent

this problem. But even this may be wishful thinking. Wind typically ex-

hibits high vertical shear and therefore the extent of horizontal transport is

directly coupled to the vertical mixing.

It is absolutely critical to recognize that the goodness of fit of the data by

the proposed flux model need not have anything to say about the accuracy

of the inferred flux values. Being able to fit the data with a particular

model merely relates to the extent to which there are enough flux degrees

of freedom and these are all well-determined by either the data or a priori

knowledge. In general, there is no reason to expect that one cannot fit data

equally well with two different models if one adjusts the fluxes appropriately.

This is sometimes investigated in the community by doing the inversion with

different models and finding the resulting variation in inferred fluxes. This is

a commendable practice. Alternatively, one can perform sensitivity analysis

to detect how crucial certain modeling assumptions may be. In any case,

modeling errors are the most insidious problem as they will often not give

any indication of their presence in the data or the inferred flux values and

statistical accuracies.

In the absence of any scheme which will automatically decide if the inferred

fluxes are truly insensitive to models, the best approach it to validate schemes

by comparison to controlled experiments. In this regard the series of ETEX

experiments aimed at detecting the source of trace release was quite infor-

mative. In both ETEX-1 and ETEX-2, a variety of advective-diffusive codes

were used to invert ground station measurements of PMCP (an inert gas).

Meteorological data was taken from standard weather reporting organiza-

tions. Surprisingly, the two experiments led to different findings. Whereas

in ETEX-1 the inversion was reasonably successful and reasonably indepen-

dent of modeling details, the inversions of ETEX-2 (see Fig. 26) all vastly
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Figure 26: ETEX-II geometry, showing the spatial grid-cell for the resolu-
tion of 2.250 x 2.250. The triangles represent the monitoring stations which
gathered the measurements used in the inversion. The disc marks the true
release site, Monterfil, France. From [42].

underestimated the source. More than a decade after the experiment there

is still no consensus on the source of the difficulty. Results taken from the

work of Bocquet and collaborators [42] is shown in Figure 5.4. The source

location was accurately determined but the magnitude was way off. One

possible reason was measurement error; another had to do with anomalies of

large vertical transport (due to unusual meteorological conditions) leading to

reduced surface concentrations as compared to what the model had predicted

should be the case for the actual experimental flux.

One interesting lesson from the ETEX study is in a general sense consistent

with the already mentioned HCFC inversion study of Stohl et al [40]. It

appears to be easier in general to infer source locations than absolute values

of fluxes. In that study, inventories provided reasonable information about

source levels and the inversion algorithms were able to do rather well in

assigning sources to specific locations consistent with probable emitting fac-

tories. In general, finding source locations depends explicitly on backtracking

from an observed concentration plume and the relative ratios of readings from

many sites apparently can collaborate so as to give good source locations.

But, absolute fluxes cannot be obtained by measurement ratios and really do
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Figure 27: ETEX-II. Profile of the reconstructed source in Monterfil. Total
reconstructed mass is equal to 73 kg and the mass reconstructed in Monterfil
is 51 kg. Actual release was 490 kg. Spatial resolution is 2.250 x 2.250. From
[42].

require a correct transport model, especially with regard to vertical mixing.

This will in general be impossible to get right with any system that has no

z-resolved data.

It would obviously be very interesting to do tracer experiments with satellite

data. This would help us understand the extent to which the inherent averag-

ing capability of satellite data makes the inversion less sensitive to small-scale

modeling errors. Given the importance of controlled release experiments for

validating modeling results we recommend that additional new tracer release

experiments be conducted. Such experiments and the required capabilities

are discussed further in Appendix F and in the section on Findings and

Recommendations.
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5.5 Reprise

Based on an admittedly short-term look at the state-of-the-art of flux in-

version, it is clear that much work needs to be done before we can even

come close to claiming that any specific measurement scenario could reach

a useful level of true accuracy. This will require much more effort aimed

at understanding model limitations, introduction of noise via discretization,

correlations between measurements for a given set of flux assumptions etc.
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6 SPECIFIC FINDINGS AND RECOMMEN-

DATIONS

Our principal recommendations and assessments can be found in the Execu-

tive Summary of this report. In the following section we elaborate on various

findings and recommendations related to the topics covered in this study.

6.1 Role of Direct Measurements

Findings:

• Precise determination of a non-cooperative country’s annual anthro-

pogenic CO2 emission (≡ FAnnual) through direct CO2 measurement is

difficult due to the following factors:

– Large spatial and temporal variations in natural background make

it difficult to separate out the anthropogenic component from the

net emissions.

– Measurements are typically sparse in both time and space.

– Model inversion from concentration to flux depends on transport

(due to winds and weather) and diffusion, and their uncertainties.

• With planned augmentation of sensors (e.g. the upcoming launch of

the Orbiting Carbon Observatory), we judge that reduction of the un-

certainty in FAnnual to 50% is plausible within about 5 years, to 20%

is possible but challenging, and to 10% is unlikely for the foreseeable

future.

• Both remote and in-situ measurements will be important.

• Methods for determining FAnnual can be validated by measurements

of U.S. emissions and/or emissions of other cooperative countries, for

which independent information about emissions can be obtained.

• The technical goal for improved direct measurement capabilities should

be to improve the remote and in-situ sampling networks, as well as as-
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similated metrology measurements, to the level that estimates of FAnnual

are limited by natural variability rather than by measurement errors and

modeling uncertainty.

Overall Recommendation:

• An organizational unit should be identified or if necessary constituted

with the responsibility and authority for developing an overall strategy

and systems design for an integrated network of in-situ and satellite

sensors with the specific goal of optimized direct measurement of GHG

emissions from major GHG emitting countries.

We now discuss three specific sub-topics of direct measurements: remote

sensing, sensor development and deployment, and isotopic measurements.

6.1.1 Remote sensing

The use of instruments on satellites to measure greenhouse gases is attractive,

particularly for the monitoring of emissions from uncooperative countries

where in situ sampling may not be possible. All currently planned U.S.

GHG satellites and instruments are, or will be, in low earth orbit (LEO).

Findings:

• By virtue of their small ground sample distance, LEO satellites will be

useful for constraining fluxes from individual sources such as large in-

dustrial plants and possibly selected cities. But because of their narrow

ground swath and long revisit time, satellites in LEO are not optimal

for monitoring anthropogenic emissions from entire states in the face

of a natural background that is highly variable in space and time. It

is not clear to us that LEO satellites will be able to optimally isolate

and measure anthropogenic CO2 emissions in the face of the large and

variable natural signals.
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• A geosynchronous (GEO) satellite offers a complementary set of mea-

surements that would be particularly powerful for potential treaty mon-

itoring. In particular it would allow better decoupling of spatial and

temporal variability.

• A GEO satellite is technically feasible.

Recommendations:

• We strongly advocate augmenting the planned LEO satellites and in-

struments with one or more GEO satellites intended for greenhouse gas

measurement.

• For the design of these satellites we recommend using model-derived

optimization of, e.g., ground sample distance, temporal versus spatial

sampling, accuracy, and combining observations of short-wave infrared

(SWIR) absorption with observations of thermal IR emissivity. High

orbits other than GEO should also be evaluated for the possibility of

enhanced performance.

6.1.2 Sensor development and deployment

Several sophisticated measurement techniques for in situ CO2 sensors have

been demonstrated, and are available commercially. However for the pur-

poses of monitoring and verification of international agreements, one needs to

design a global-scale measurement system that would optimize sensor place-

ment and accuracy. Doing so will require tools to address questions such as,

“should one use fewer but more accurate sensors, or larger numbers of less-

accurate sensors?” The availability of moderate accuracy low-cost sensors

will enable a large variety of possible sensor placements.

Findings:

• A large increase in the network of point sensors (ground/air/ships) will

very likely be useful for FAnnual determination.
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• Less costly and more widely deployable point sensors that have suitable

accuracy for measuring local CO2 concentration can likely be developed

in the near-term.

Recommendations:

• Pursue the development of a 1 ppm accuracy CO2 sensor that costs less

than $500.

• Use modeling capability to evaluate the value of possible deployments,

including considerations of sensor proliferation, location, and accuracy:

– Cell phone towers world-wide,

– Weather balloon radiosondes for vertical profiles,

– Buoys or floaters at sea,

– Commercial aircraft,

– Widespread distribution to cooperative sites.

6.1.3 Isotopic measurements

Measurements of CO2 concentration yield emission estimates on net emis-

sions of CO2. Information on the anthropogenic sources is derived from

the spatial and temporal variations of the CO2 concentration measurements.

Measuring isotopic ratios provides a different approach for determining the

processes that produced the CO2.
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Findings:

• Dilution of 14C is a powerful tracer of fossil carbon.

• Complex environmental exchange processes, many of which enrich or

dillute abundances of carbon and of oxygen isotopes, complicate quan-

titative interpretion of isotopic data.

• CO2 has a rich spectrum of isotopologues (two stable and one long-lived

unstable carbon isotope, three stable oxygen isotopes) whose potential

has not been exploited.

• There will be a continuing need for facilities for mass-production analy-

ses of isotopic abundances, both unstable (accelerator mass spectrome-

try) and stable (conventional mass spectrometry and vibration/rotation

spectroscopy for remote sensing).

• A baseline library of CO2 samples from locations of interest would be

valuable.

• Isotopic measurements, especially of plant samples, provide time-averaged

constraints on fossil-fuel emissions that are complementary to time-

resolved direct measurements of CO2 concentration.

Recommendations:

• Ensure that the US atomic mass spectrometer (AMS) capability be

maintained, either by support of the LLNL facility, or by investment in

another, comparable AMS dedicated full time to carbon isotope analy-

sis.

• Undertake an annual survey of 14C/12C in the U.S. via samples of crops

and other vegetation, and validate the inferred mixing ratios of fossil

fuel CO2 against other measures (especially inventories and direct mea-

surements of combustion products such as CO, NOx).

• Start a pilot program of 14C analysis using crops of known provenance

(region, growing season) imported from other nations.
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• Create a funding opportunity for research into how spatial and temporal

variations in 47CO2 can inform understanding about the combustion or

other processes that produce it.

6.2 Role of Proxy Observations: Monitoring Energy

System Infrastructure

Findings:

Proxy signatures of energy system infrastructure “activities” could include:

• Imagery of the construction and operation of wind farms, solar power

generation, and nuclear plants.

• Imagery that samples the transport of coal by rail from the mines to

coal-burning power plants, of oil from wells to refineries and of product

from refinery to end-user.

• Thermal signatures of crude oil refining distillation columns, of com-

pressors for carbon capture and storage (CCS), and of compressors on

CH4 distribution pipelines.

• Imagery of feedstock flows and sizes of fermenters in biorefineries.

• Other signatures and signals observed by commercial, civil and other

systems.

Additional sources of CO2 emission that could eventually be the object of

“proxy” monitoring include iron and steel production, cement production,

and activity at industries using fossil-fuels as a feedstock. In the near term

monitoring the items listed above would account for a large fraction of the

anthropogenic CO2 emissions from the countries that emit more than 80%

of the CO2.
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Recommendations:

• Acquire and maintain a detailed knowledge of the energy infrastructure

of the major greenhouse gas emitting countries and identify key sig-

natures of energy flows. To accomplish this, the following actions are

required:

– First, a systems-level strategy must be developed. This strategy

should lay out clear long-term goals (e.g., to monitor several pro-

gressively more strict limitations on greenhouse gas emissions, with

the associated required uncertainties), and determine which coun-

tries will be monitored (e.g., the approximately 10 countries respon-

sible today for more than 80% of the greenhouse gas emissions).

– An organization should be identified or if necessary constituted that

will be responsible for putting in place this proxy monitoring sys-

tem from a combination of civil, commercial, and other resources.

This organization, which would be staffed by technical experts from

a variety of agencies, would be tasked to determine what activi-

ties will be monitored, and which remote-sensing (and possibly in

situ) assets could best be used for monitoring each activity. They

would then use modeling to develop quantitative sampling strate-

gies needed to achieve the necessary levels of uncertainty for each

activity. We estimate that a sizeable technical organization will be

needed for these tasks over the next 5 years. We also note that per-

tinent expertise exists within the intelligence community, the De-

partment of Energy (e.g. EIA and Critical Infrastructure groups),

as well as other agencies.

– Begin to calibrate infrastructure-based monitoring signals against

known “ground truth” (in the U.S. and other cooperative countries)

as soon as possible, once the above goals and strategies have been

agreed upon.

– Begin soon to acquire data from other countries to establish a base-

line for comparison with future data.
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6.3 Role of Modeling

Large-scale computational models of greenhouse gas emissions and their effect

on global climate have developed rapidly over the past decade. However, the

main thrust of these models has not been on treaty monitoring or verification.

Rather, they have been built and optimized to understand the science of

climate change, and to assess the global effects of greenhouse gases on future

climate.

Findings:

• Large-scale climate simulation models have four essential roles:

– Inversion of concentration measurements to obtain estimates of

fluxes from natural and anthropogenic sources,

– Estimation of uncertainties in the determination of these fluxes,

given the spatial/temporal density of sampling, the inherent mea-

surement error of the instruments, and errors in the meteorological

models/data used in the conversion of concentration to flux,

– Distinguishing systematic bias and drift in measurements from ac-

tual changes in flux,

– Identification of the necessary and sufficient measurements needed

to estimate emissions (FAnnual), and optimization of the sampling

strategy for a coordinated system of measurements.

• The last three roles are under-developed, but are critical for optimizing

a measurement network and for support of treaty monitoring.

Recommendations:

• Develop the capability to make quantitative estimates of flux uncer-

tainty using simulation models. This should be pursued cooperatively

with other relevant programs such as those of NOAA and those carried

out in the context of CTBT monitoring.
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• Use these models to quantify the sensitivity of flux uncertainty to sys-

tematics in measurements.

• Develop modeling tools that can be easily used for design and evalu-

ation of in-situ sensor networks and of satellite systems and sampling

requirements. Design of in-situ networks may likely be country-specific.

• Develop the capability to carry out experiments with controlled emis-

sions of tracer gases in order to validate modeling and inversion tools.

This should be done in cooperation with other relevant efforts such as

CTBT monitoring.

We remark that significant expertise resides in the academic research com-

munity and this expertise should be utilized. However, there needs to be

a designated operational entity that has the responsibility for developing,

maintaining and maturing the necessary tools for modeling and design.

6.4 Roadmap

Our principal recommendations are summarized in the form of a roadmap

provided in the Executive Summary of this report.
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A APPENDIX: JASON and Inexpensive NDIR

We purchased three SenseAir instruments from CO2Meter in order to eval-

uate the opportunities for achieving high accuracy by appropriate experi-

mental use. Figure 28 illustrates one of these boards, and other equipment

we assembled. The K30 “sensor development kits” we purchased cost $200

Figure 28: The SenseAir sensor is shown on the left, a small 6V air pump
purchased from CO2Meter, a desiccant (white) and CO2 scrubber (black)
we created by filling an aquarium check valve with CaO, our P and T data-
logger from GCDataConcepts is on the right, and a CO2 cylinder is below.
The CaO scrubber can remove the CO2 from about 500 liters of air and the
CO2 cylinder can fill about 8 liters at STP.

apiece, but the boards are sold for $112.50 in quantity 10 or more. We also

purchased from CO2Meter a small, battery-driven pump, desiccant, and sen-

sor cover. We obtained bottles of CO2 intended for bicycle tire inflation, and

we also removed the valve portion of an aquarium check valve and inserted

about 5 grams of CaO wrapped in gauze into the volume to act as a CO2

scrubber.

CO2Meter also distributes another sensor from Gas Sensor Systems, the

C100, that uses two LEDs and photodiodes, tuned to the CO2 band at

4.26 μm and an off-band at 3.95 μm. We have no reason to believe that
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this sensor might not have superior performance to the K30, but our goal

was to evaluate the performance of one exemplar rather than trying to do an

industry-wide comparison of all the options.

The SenseAir K30 board uses pyroelectric sensors that detect flashes of in-

candescent light through a narrow band filter every 2 sec. They are quite

sensitive to temperature, so the detector uses a “blind channel”, a matched

detector that is masked, and the difference of these two raw signals provides

the signal S. The light source is carefully qualified and the drive signal for

it is regulated. The light is emitted into a gold-plated labyrinth, so although

the total size is about 3 cm, the path length L is about 10 cm. SenseAir

claims that their “curve of growth” calibration is stable at the few percent

level, but that gain drift limits their accuracy to ±30 ppm. (The use of a

differential, blind channel eliminates zero point offset to some accuracy.) The

unit is designed to work to about 1% CO2, so detection of 400 ppm (0.04%)

is at the very low end of the designed operation range. (SenseAir somewhat

confusingly calls their gain calibration the “zero” offset, because it is the

response with zero concentration CO2.)

Pyroelectric sensors use the heating from illumination to deform a crystal

and generate a dipole separation of charge which can be detected as a mo-

mentary voltage. They therefore have no DC response at all, and their use

requires a variable light signal such as the flashing incandescent light. They

cannot provide a signal at zero light intensity, and so it is not possible to

obtain an offset measurement this way, hence the use of a blind channel as

reference. In fact the outputs from the lit and blind channel vary together

dramatically, and taking their difference reduces the variation RMS by a fac-

tor of 15. Photoelectric detectors such as PbSe, InGaAs, or InSb do offer the

opportunity to measure a response at zero illumination.

The K30 sensor employs two software features to improve the utility of the

output. The first is “automatic baseline correction” (ABC), that adjusts

the lowest value baseline output back to 400 ppm with an adjustable time

constant, 7.5 days by default. The second is “adaptive leaky averaging” of
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the output, an exponential filter with an e-folding that changes between 0 and

256 samples depending on the perceived rate of change. For all experiments

we disabled the ABC, but left the leaky average function active.

The observed intensity in both lit and blind channels is available from the

USB interface, as well as the difference and a filtered intensity difference.

This filtered intensity is converted to a “calibrated intensity” according to

the gain factor (“zero adjustment” in SenseAir’s terminology), and then to

a CO2 concentration via linear interpolation between a 16 point table of

intensity, CO2 concentration pairs that is determined for each unit and stored

in EEPROM.

We also purchased a pressure and temperature data-logger from Gulf Coast

Data Concepts (gcdataconcepts.com), knowing that the indicated concen-

trations would depend on P and T . This data-logger measures pressure and

temperature to accuracy of about 0.1%, runs for about two weeks on an AA

battery, records to a 1GB microSD card, and has a USB plug for computer

communications. It costs $119. There are also many USB humidity sensors

available, and we believe that incorporation of pressure, temperature, and

humidity sensors onto a board for CO2 measurement would involve a cost of

∼$30, and negligible power, mass, and size.

Our first step was to write software to communicate with the K30 board in

order to exercise all visible functions and extract data more flexibly than the

supplied Windows GUI. Very helpful discussions with CO2Meter revealed

access to many of the functions that are not available through the FTDI

interface, such as reading of intensity, examination of RAM and EEPROM,

and disabling the leaky averaging or ABC calibration.

The three boards report CO2 concentrations every 2 seconds, and with the

ABC and leaky averaging disabled the CO2 values have distributions that are

reasonably independent and Gaussian. The RMS of reported CO2 is 16 ppm,

9 ppm, and 10 ppm for the three boards respectively, and 2.8 ppm, 1.4 ppm,

and 2.2 ppm when averaged over a 100 sec interval and drift removed. With
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the leaky averaging enabled (effectively averaging some 256 prior samples)

the RMS is about 1.5–2 ppm.

Our first experiment began on June 30, when we dangled three SenseAir

units outside of the second story window of our office building. The site

is on a campus that has managed, California vegetation, consisting mostly

of eucalyptus trees and grass. There are many parking lots nearby with

occasional traffic, the I5 freeway is about 0.5 km east, the I805 freeway is

about 2 km east, and roads that carry substantial traffic are also within 1 km.

Breezes were light and we did not notice any particular prevailing direction.

Figure 29 illustrates what we observed from one of the sensors over a period

of two weeks.

Figure 29: Two weeks of CO2 concentration outside Building 29 is shown
for one of the sensors. The drift indicated by the blue line is probably a
sensor artifact; the shorter term variation is real. July 10, 11, and 17,18 were
weekends.

The sensors were all set to 400 ppm on June 30, and we believe that the

steady upward drift in reported concentration is instrumental drift. These

units are not supposed to attain full stability until a 3 week “burn-in” period,

so the roll-over in mean seen in Figure 29 may indicate the ultimate stability

is being achieved. We have seen less drift since this period, but we believe
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that a 10 ppm/day drift can be expected, and a 1 ppm precision with a 400

sample, 800 sec integration time.

Despite the slow drifts in indicated CO2 concentration, we were immediately

struck by the dramatic variability, both episodic and diurnal. Figure 30

shows how well correlated these are between sensors. The correlation of CO2

Figure 30: Expanded time history of CO2 outside Building 29. The three
sensors are shown in different colors. The “blue” sensor was placed in a
plastic bottle whose slow leakage provided a ∼8 hour time filter on the CO2

concentration seen. The RMS variation of the blue samples in the right hand
panel is 1.9 ppm.

spikes with CO2 emissive events such as leaf blowing, grass cutting, and tree

trimming, and also the abrupt diminution of spike frequency at 6 pm each

day convinces us that they are real. These spikes have a very large amplitude

compared to the accuracy of the SenseAir boards, and clearly convey a great

deal of information. Whether this information is useful remains unclear,

however. There is a significant diurnal variation that is surely caused by

plant respiration, most clearly visible on the weekends, although the onset

of beach traffic obscures the dip in CO2 in the middle of the day.

We did think of separating the three sensors so as to cross-correlate the re-

ported concentrations as a function of time and be able to determine the size

and direction of the CO2 clouds blowing by, but did not have an opportunity
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to perform that experiment.

In order to obtain an absolute measurement of CO2 concentration from the

SenseAir unit, we must find a way to calibrate its systematic bias and drift.

Figure 31 shows the basic idea. The net transmission through the cell follows

Figure 31: A notional graph showing the effect on transmission through a
fixed gas cell on CO2 density (proportional to P/T ) and on CO2 concentra-
tion is shown on the left. The transmission should be proportional to the
measured signal S divided by the light intensity I and system gain G, with
some offset and scale to be determined. The effects we observed by varying
P are shown on the right.

a set of curve of growth curves that depend on the number density of CO2

molecules, and therefore on the PC/T combination in Equation 4-3. In the

face of systematic drifts, we need three pieces of information to determine

a concentration, the instrumental offset, and gain. For the SenseAir the

offset is supposed to be very small because of the matched, differential input

between lit and blind channels.

The ideal, commonly used for calibration of the instrumentation at CO2

monitoring sites, is to measure output for gas samples at three, known con-

centrations that straddle the concentration of interest. (The non-linearity of

a curve of growth is substantial enough that a linear interpolation between

two samples is likely to be inaccurate unless the gas samples happen to be

very close to the unknown concentration.) For example, at the Mauna Loa
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observatory, three reference gas bottles of concentration calibrated at the

∼0.07 ppm level from the WMO are used, at concentrations of about −10,

0, and +10 ppm relative to ambient (Tans and Thoning, 2008).

CO2Meter recommends taking the curve of growth of the SenseAir as fixed

and known, calibrated at the factory into EEPROM, and measuring only

the gain. They provide the means to adjust this gain to give the correct

concentration at “zero CO2” by exposure to gas at 0 ppm or 400 ppm con-

centration. (Their ABC algorithm automatically shifts the offset to make

the 7.5 day lowest concentration 400 ppm.) We investigated three methods

of calibration.

The right panel of Figure 31 shows the effect of changing pressure on the

CO2Meter’s indicated CO2 concentration. We placed the sensor in an air

tight bottle and alternately connected the small pump we purchased to pres-

surize or evacuate the jar. We monitored the pressure in the jar using the

data-logger. This tiny pump is evidently capable of changing pressure by

about 12% relative to STP, and we observed the expected change in the in-

dicated concentration. In principle, we are measuring the slope of the curve

in Figure 31 at STP, and this can be one of the two measurements needed

to set the offset and gain.

A more direct method of calibration is shown in Figure 32. We placed within

the jar approximately 5 g of CaO wrapped in filter paper which has a vora-

cious appetite for CO2. Even without air circulation, the CO2 concentration

dropped with a time constant of about 400 sec, effectively reaching 0 ppm

within an hour. This is another independent measurement of offset and gain.

If we take the offset as fixed and zero, this alone is sufficient to calibrate the

SenseAir unit. We did not have the means to evaluate the accuracy of sub-

sequent concentration measurements of ambient air at 400 ppm (i.e. verify

the SenseAir calibration of the curve of growth).

The last calibration method involves trying to create a known concentration

by mixing known volumes of gas. This is illustrated in Figure 32. We mea-
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Figure 32: The result of exposing the sensor in a closed bottle with ambient
air to a CaO CO2 scrubber is shown on the left. On the right, a known
volume of CO2 injected into the bottle causes the indicated concentration to
rise by 400± 47 ppm. The overshoot and subsequent oscillation are artifacts
of the dynamic leaky averaging; the RMS prior to injection was 0.9 ppm; the
RMS after was 2.8 ppm.

sured the volume of the closed bottle to be 500±30 ml, and we filled another

bottle with “pure” CO2 from a bicycle inflation cylinder. We do not know

the resulting CO2 concentration, but we believe it is probably very close to

100% just by virtue of the relatively low volume and pressure in the cylinder

and the care with which we removed the air before filling with CO2. We then

filled a small syringe with CO2 and injected a volume of 0.2 ± 0.02 ml into

the bottle. We therefore expected the indicated CO2 concentration to rise

by 400 ± 47 ppm. In fact the increase in concentration was 350 ppm, indi-

cating that the gain of the SenseAir unit is consistent with being accurate.

Obviously this was a crude test, and we started with gas at ambient 400 ppm

instead of gas that had been scrubbed of CO2 but it illustrates the potential

of creating known CO2 concentrations cheaply, on site.

We close with thoughts on how to build a 1 ppm CO2 sensor for less than

$500. (In fact we believe this could cost no more than $200 in quantity.)

Figure 33 shows the basic idea.
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Figure 33: Our concept for a SenseAir equipped with auxiliary equipment
capable of providing an absolute calibration. The various valves can be set
to feed the sensor ambient air, air scrubbed of all CO2, air with a measured
concentration of CO2, and air that has been lowered or raised in pressure by
10%.

The heart of the unit is the CO2 sensor, notionally the SenseAir K30, but

others would work as well. Not shown are sensors for pressure, temperature,

and humidity. These are all widely available as full, USB-interfaced units

for low cost, so we believe the CO2 sensor board could be equipped with the

added functionality for no more than $30.

There are 14 valves shown, but actually there are only a few functions so

many of the valve functions can be ganged into a special, plastic piece, for

example o-rings drawn along a cylinder, connecting different chambers to

input and output ports at different positions. The four valves around the

pump and desiccant, for example, simply serve to reverse the flow of the

pump, and could potentially be replaced with a DC motor and bidirectional

pump.

The five functions provided are

• Direct flow of ambient air drawn through desiccant across the CO2 sen-

sor for measurement of ambient CO2 concentration.
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• Increase of the pressure on the CO2 sensor

• Decrease of the pressure on the CO2 sensor

• Closed cycling of air through a mixing volume and CaO scrubber, pro-

ducing a 0 ppm atmosphere for the CO2 sensor with some time constant,

and filling the mixing volume with 0 ppm air.

• Creation of a known, calibration concentration of CO2, by a) flushing the

cross shaped volume with pure CO2 from the bottle and out the needle

valve, b) letting that volume come to ambient temperature and pressure,

c) mixing this volume of CO2 into a previously scrubbed volume in the

mixing volume (and other plumbing).

We believe it should be possible to achieve 0.1% repeatability with equipment

of this sort, and accuracy by a one-time calibration. Note that 0.1 mole of

CaO (5.6 g), and a 16 g (8 l at STP) bottle of CO2 weigh less than an ounce

and are adequate for about 1000 calibration cycles.

The SenseAir K30 is designed to measure up to 1% CO2, i.e. 10,000 ppm.

The labyrinth through which the 4.26 μm light passes is about 3 cm in size,

and is designed to have a transmission of 93% at 400 ppm CO2 and 64%

at 10,000 ppm. Comparison with Figure 15 suggests that it apparently has

an effective path length L of ∼10 cm, but the filter is somewhat broader

than 2300–2400 cm−1. Therefore at ∼400 ppm the attenuation is quite

small, placing stringent accuracy requirements on the light source, sensor,

and electronics to measure concentrations at the 1 ppm level. That the K30

does as well as it does is therefore quite impressive.

It seems straightforward to design a better labyrinth that has a longer ef-

fective path length for a similar compact size. For example, an integrating

sphere of diameter R with an input and exit port of size r will emit a fraction

of light from the exit port

T =
1

2

[
1 +

2R2

Ar2
+

2πR3α

3r2

]−1

, (A-10)

where A is the absorption per bounce off of the wall and α is the absorption
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per unit length, α(λ) = nσ(λ) from Equation 4-2 (in the limit that A � 1,

αR � 1, and assuming random scattering from the walls).

Since the reflectivity of gold at 4 μm is ∼99%, we could achieve an effective

path length 25 times greater than the diameter of a sphere by using a pair of

ports that are 5 times smaller than the sphere. When we integrate this over

a bandpass of 4.2 μm to 4.35 μm with notional parameters for velocity and

pressure broadening, for example, we find a 25 mm integrating sphere with

a pair of 5 mm ports and wall reflectivity of 98% will suffer an extinction of

output by 33% when 400 ppm CO2 gas is present. Reference to Figure 15

indicates that this little 1 inch integrating sphere is therefore acting like a

1 meter path length.

Changing pressure or temperature affects the absorption both through the

density of scatters as well as the pressure-broadened line profiles, so we again

have a non-trivial curve of growth. Inasmuch as exact details of any inex-

pensive sensor such as bandpasses, detector and emitter responses, and exact

assembly geometry cannot be controlled with any precision, we expect such

a sensor would require a calibration process that spans the range of concen-

tration, pressure, and temperature that is expected to be encountered. The

stability should be possible to control at the 0.1% level, however. If extreme

change in pressure is expected, as with a balloon flight to the stratosphere,

a differential comparison with a known reference at the same pressure, akin

to the design of Silver and Zondlo (2006) might be appropriate.
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B APPENDIX: Aircraft Monitoring of Car-

bon

In monitoring nations’ activities in mitigating—or worsening—the global

burden of atmospheric carbon, aircraft have a unique role, because they

can take vertical profiles of CO2 and other greenhouse gases from low alti-

tudes above ground-based samplers throughout a column reaching to the top

of the troposphere, at selected locations. Measuring carbon fluxes from the

ground, or even tall towers, may not sufficiently enable models to identify

fluxes from concentrations, because there are appreciable gradients in carbon

concentration as a function of altitude in the troposphere. Satellite measure-

ments, although (as we discuss elsewhere) may be of great use in a general

carbon-activity monitoring framework, cannot make the detailed vertical pro-

file measurements, including air sampling, that aircraft can make. Nor can

they be guaranteed to be where they are needed at a specific time. Aircraft,

both commercial with limited instrument packages, and others dedicated to

CO2 monitoring and more fully equipped, are valuable in many respects, as

we discuss here.

There are three classes of aircraft programs: The first is already in operation,

to some extent, with MOZAIC and similar agreements calling for commercial

passenger jets to carry instrumentation that sample vertical profiles at takeoff

and landing in major cities. The second consists of aircraft flying dedicated

science missions in and under the sponsorship of various nations. The third

would be similar in spirit to the Treaty on Open Skies that came into effect

in 2002. This agreement, first proposed in the Eisenhower administration,

monitors nuclear weapons-related activities in 34 nations, including major

countries such as the US, Russia and certain East European nations, France,

Germany, Spain, the United Kingdom, and Ukraine. The Treaty on Open

Skies calls for monitoring of the entire territory of a signatory nation with

aircraft having a specified complement of sensors, with each such nation

obligated to allow over flights according to a quota, and allowing the nations
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to conduct as many observation flights as its quota of over flights that it

must allow. The reason for this complementary program is that the aircraft

flight paths will not be limited to commercial routes; in particular, Open

Skies aircraft could fly vertical profiles other than near airports.

In this section, we discuss commercial and selected government programs,

including MOZAIC, and a possible regime for a Open Skies treaty on carbon

monitoring.

B.1 Airline in-situ Measurements

Researchers have indicated that a lack of CO2 measurements over continents

is partially responsible for the large variation in CO2 flux models [1, 2, 3].

There are a number of previous and current efforts to carry out in-situ CO2

measurements in aircraft, both domestically and internationally. Previous

efforts in in-situ aircraft measurements can be separated into two categories.

The first category is leveraged commercial aircraft that have instruments

installed, the second category consists of aircraft dedicated to measurement.

The former category of aircraft do not alter their flight path to accommodate

any special type of measurement. Here we will detail the previous efforts and

then discuss how these efforts may be improved on.

MOZAIC (1994-2009), an EU effort, was originally designed to assess the

effects of air traffic in the upper atmosphere (the boundary of troposphere

and the stratosphere) [4]. MOZAIC outfitted five Airbus A340 with a 120

kg instrument rack with instrument sampling intake tubes that breach the

airplanes’ hull. Since 1994, the MOZAIC program has collected data from

over 30,000 flights, and has gone through a number of revisions, adding CO

and NOx measuring capabilities in 2002 and 2001, respectively. Figure 34

shows the MOZAIC instrumentation on an aircraft.

Lufthansa has simultaneously run the CARIBIC program (since 1997) and

conducts several test flights a year using an A340-600 aircraft with several
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Figure 34: MOZAIC instrumentation panel on the Airbus
A340 (figure from Volz-Thomas, A., and Cammas J. P.: From
MOZAIC to IAGOS Status and Persepectives, online presenta-
tion: http://www.wmo.int/pages/prog/arep/gaw/documents/Volz-
Thomas MOZAIC IAGOS GAW2009May09.pdf).

tons of equipment that sample over 40 gases [5]. CARIBIC uses the infrared

absorption technique to measure CO2 concentrations in-situ [5]. Current ef-

forts are underway to develop the successor of MOZAIC, which is named

IAGOS. The IAGOS project intends to expand the number of participating

aircraft and number of gases measured while still using a MOZAIC-like in-

strumentation payload (hundreds of kg). These efforts, MOZAIC, CARIBIC,

and IAGOS are all conducted on commercial aircraft (principally the Airbus

A340) and in conjunction with commercial airlines (Lufthansa, Air France,

etc.). Figure 35 gives some details.

In addition to the category-1 type measurement craft, the EU had two addi-

tional pilot programs (CAATER-1 and CAATER-2) that used DLR-Falcon

20 aircraft for dedicated measurement of CO, CO2, and 222Rn (Xueref-Remy
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Figure 35: MOZAIC, CARIBIC, and IAGOS timeline, participation,
and number of publications ((figure from Volz-Thomas, A., and Cam-
mas J. P.: From MOZAIC to IAGOS Status and Perspectives, online
presentation: http://www.wmo.int/pages/prog/arep/gaw/documents/Volz-
Thomas MOZAIC IAGOS GAW2009May09.pdf))

2010). These aircraft measured CO2 via non-dispersive infrared gas analysis

and collected samples for in-lab verification. The CAATER-1 campaign con-

sisted of five flights and 14 hours of air time, while the CAATER-2 consisted

of three flights and 8 hours of air time with vertical profiles collected be-

tween ground and 4000m. Three-dimensional CO2 profiles from CAATER-1

are shown in Figure 36.

In the second category, dedicated science flights, we note that the USA has

had a NOAA program (since 1992) that falls into category-2 aircraft mea-

surements. The Carbon Cycle Greenhouse Gases (CCGG) group uses Cessna

402 aircraft to measure CO2 and other gases via sample collection at up to

8000 meters. These samples are then measured in the laboratory.

The modeling community might benefit greatly from the implementation of

further category-1 airplane measurement programs. At a mass of ∼100 kg

for instrument packages, the real cost to the airline is a substantial fraction
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Figure 36: Three-dimensional CO2 profiles from the CAATER-1 program
(Figure from Xueref-Remy, I., Bousquet, P., Carouge, C., Rivier, L., Viovy,
N., and Ciais, P.: Variability and 20 budget of CO2 in Europe: analysis
of the CAATER airborne campaigns Part 2: Comparison of CO2 vertical
variability and fluxes from observations and a modeling framework, Atmos.
Chem. Phys. Discuss., 10, 42714304, 2010, http://www.atmos-chem-phys-
discuss.net/10/4271/2010/.).

of a passenger ticket price, implying that it is reasonable to allocate as much

as $100k for the instrumentation. Any large expansion of measurement pro-

grams will either involve military aircraft or require that commercial airlines

be paid revenues for carrying the greenhouse gas sensors. Therefore it is sen-

sible that the category-1 programs use relatively sophisticated and expensive

instrumentation, and sample gasses other than CO2 such as H2O, CO, CH4,

O3, NOx, NOy, etc. With newer NDIR measurement technologies, we can

hope to see instrumentation packages decrease in cost, size, and mass. Fur-

thermore, providing the devices with a direct feed to the outside air intake,

will obviate the need for physical alteration to the craft (unlike MOZAIC

and IAGOS).

Hundreds of thousands of flights left US airports in 2009. Boeing 737 and 757

aircraft were the most widely used type of aircraft with nearly 60,000 flights.

131



Fitting only these two types of aircraft with sampling instruments and data

recording devices could provide a wealth of data. A deployment example

of such a program could be with Southwest Airline and The United Parcel

Service (UPS), which combined, accounted for over 20,000 flights using 737

and 757 aircraft.

There are presently about 4000 Boeing 737 aircraft, 3000 Airbus A320, and

1000 Boeing 757s in service. For the cost of OCO, it would be possible to

equip 1000 aircraft with $100k of gas monitoring equipment and allocate

$100k per year per aircraft for two years operations cost. Each aircraft

flies some million miles per year, so 1000 aircraft would cover 1.6 billion

kilometers. By contrast OCO orbits at ∼7 km/s and therefore traverses only

0.2 billion kilometers in a year, only a tenth of the path. Aircraft cannot fly

into uncooperative airspaces; aircraft measurements may be well or poorly

matched for important flux localization and estimation. Figure 37 illustrates

the degree of global coverage possible. Whether this is an opportunity worth

Figure 37: The routes followed by aircraft over the course of a year are shown.
(http://en.wikipedia.org/wiki/ File:World-airline-routemap-2009.png.)

pursuing depends on how informative it is to models, but this example serves

to illustrate how vast the opportunities are, given the vastness of resources the

world spends on energy and is willing to spend to maintain a stable climate.
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B.2 Open Skies Aircraft Program

The commercial-aircraft programs are very valuable but potentially limited,

both because of the nature of the instrument packages they carry and because

of limitations on their flight paths illustrated in Fig 37. It is also not clear that

their measurements would be accepted for treaty purposes. An alternative

would be a fleet of planes whose instrumentation and flights are governed by

a treaty. Possible instruments and roles for such treaty aircraft might be

1. Vertical profile sampling in selected tropospheric columns, both near

major cities (as to some extent done by MOZAIC, IAGOS,. . . ) and

elsewhere (Open Skies), as allowed by treaty.

2. LIDAR profiles from the ground to the treetops through forest canopies

too dense for foliage-penetration (FOPEN) radar to be of much use, for

monitoring of land use and reforestation.

3. Small, light K-band synthetic aperture radars are capable of high-resolution

(down to a few cm, in some cases) imaging, day or night, and can de-

tect change in water, ground, or canopy heights at this high level of

resolution if needed. They are also capable of coarser resolution for

larger-scale monitoring and change-detection activities.

4. High-resolution EO/IR monitoring of power plants, factories and other

man-made carbon-generating activities, if questions of compliance come

up and if the resolution is allowed by treaty.

Sampling of vertical atmospheric columns might involve capturing air sam-

ples at various altitudes, or using absorbers that allow air to flow through

a filter that absorbs carbonaceous compounds. These can be returned to

the ground for study, notably for determination of isotopic fractions of 14C,

without having to return the entire air sample containing the carbon.

A FOPEN radar typically operates at L-band or longer wavelengths (that is,

≥ 30 cm), in order to penetrate canopies and observe ground phenomena (in

the present case, phenomena associated with land use). However, sometimes
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this is inadequate because of the density of the canopies. In almost any

forest, however dense, there are areas where a LIDAR beam, at much shorter

(optical) wavelengths, can penetrate to the ground through openings in the

canopy that are of order of the wavelength, or greater, in size. An aircraft

flying low and slow may receive a useful, although attenuated, return.

Any “Open Skies” program clearly depends on over flight permission negoti-

ated by treaty. The data collected on any over flight must be made available

to any participating nation, at a cost not to exceed the cost of reproduc-

tion. Smaller countries, unable to afford or field aircraft all over the world,

will therefore get much more data on carbon worldwide than it could gather

by itself. Whether such a program might be valuable depends strongly the

level of access granted by treaty. This is beyond the scope of this study, but

we point out the potential value and opportunity that “Open Skies” might

present.

B.3 Future Directions

Monitoring of carbon fluxes solely from ground-based sensors will miss the

crucial effects of upward convection, and therefore estimation of fluxes from

ground concentrations will be hampered by meteorological uncertainty. A co-

ordinated network of aircraft measurements on appropriate space and time

scales may prove to have critical importance to models seeking to infer fluxes

from concentrations. Current monitoring programs such as MOZAIC, with

sensors mounted on scheduled commercial aircraft, are useful for vertical pro-

file measurements near cities, where important carbon emitters are located.

However, such planes fly at more or less constant altitudes in other regions,

and other aircraft flying different routes and taking vertical profiles could be

important.

Dramatic expansion of MOZAIC, even beyond IAGOS, may be extremely

informative to models. We do not anticipate that “category-2” programs

involving research flights will have a substantial production utility for de-
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termining fluxes from models, although as R&D efforts for learning how to

couple observations to fluxes via models they will be extremely valuable.

We offer the vision of an “Open Skies” program for greenhouse gasses as a

component of GHG treaties. Although less cost effective per kilometer than

equipping commercial or military flights, such flights could observe CO2 con-

centrations and infer fluxes directly, in a way to ascertain fluxes with minimal

uncertainty and ambiguity.
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C APPENDIX: Ocean Issues

Just as some countries, including the U.S., have suggested that a greenhouse

gas treaty should give credit for uptake by forests and agriculture, so are

some coastal states are likely to claim credit for uptake in their exclusive

economic zones (EEZs), extending 200 nautical miles off shore. This raises a

host of scientific and legal issues, not least of which is that outgassing nearly

balances uptake, averaged globally (Figure 38). Because either can dominate

locally, depending on ocean circulation, biological activity, and temperature,

some waters will only add to a country’s emissions if included in a treaty.

Technological changes are rapidly improving our ability to measure air-sea

carbon fluxes and to monitor the ocean’s carbon content. Both will be impor-

tant if a carbon treaty has provisions for oceanic fluxes. Even if air-sea fluxes

are not considered in a treaty, measurements of atmospheric CO2 concentra-

tions can be made close to most coastal states using ships of opportunity.

Finally, use of Climate Process Teams by oceanographers offers a template

for atmospheric scientists to break down barriers between modelers and mea-

surers that appears to be limiting progress.

C.1 Air-sea CO2 Fluxes

Air-sea CO2 fluxes can be expressed simply as the product of two terms (C-

11), the gas transfer velocity, k, and the difference in partial pressures in air,

pCOa
2, and water, pCOw

2 , across the air-water interface.

F = kK0(pCOw
2 − pCOa

2) (C-11)

where F has units of mol m−2 year−1, k has units of m s−1, and K0 is the

aqueous-phase solubility (mol m−3 Pa−1).

A legion of devils, however, lurk in the details, shown schematically in Fig-

ure 39. k varies with kinetic forcing of the air and sea boundary layers con-

trolling dynamics of the gas transport. Kinetic forcing, in turn, is influenced
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Figure 38: Schematic of the ocean’s carbon inventory and fluxes [1]. Before
1850 air-sea CO2 fluxes were in balance at 70 Pg C yr−1. As a result of in-
creasing atmospheric concentrations since 1850, last year, the ocean absorbed
2 Pg C yr−1 more than it gave up. Dissolved inorganic carbon (DIC) is the
dominant form of carbon in the ocean. Only when POC and PIC are in-
corporated into the sediments is carbon removed from the ocean-atmosphere
system.

Figure 39: Simplified schematic of factors controlling air-sea CO2 fluxes [6].138



by secondary variables, such as atmospheric stability, direction and fetch of

the wind, and the nature of breaking waves and the bubbles they create.

Somewhat simpler, the partial pressure contrast depends on thermodynamic

variables, such as sea surface temperature (SST), flushing of the interface by

currents, and biology and its products, e.g., surfactant films on the surface.

Owing to the importance of these fluxes, intensive and successful field pro-

grams have been conducted, as carefully reviewed by [6]. Most importantly,

fluxes were observed simultaneously from research ships applying covariance

and profile methods, yielding consistent results. Covariance methods obtain

correlations between gas concentrations, c, and vertical velocity, w,

F =< c′w′ > +cw (C-12)

where primes indicate fluctuations about averages, and w is the average ve-

locity of dry air required to maintain its density in the presence of latent and

sensible heat fluxes. The strong dependence of fluxes on wind speed led to

fitting k as the sum of a constant and the cube of wind speed,

k660 = 3.3 + 0.026 U3
10 GasEx − 1998 (C-13)

= 8.2 + 0.014 U3
10 GasEx − 2001 (C-14)

where k660 is used for CO2 because the Schmidt number (the ratio of diffusiv-

ity to kinematic viscosity, D/ν) is 660 for CO2 at 20oC in fresh water. U10 is

the wind speed 10 m above the sea surface. GasEx-1998 was an observational

program in the north Atlantic, where winds were moderately strong, and the

cold ocean absorbed CO2. GasEx-2001 went to the eastern Pacific, where

winds were light and up-welling water near the equator was outgassing. In

spite of being obtained in two very different oceanic regimes, the two fits

are surprisingly consistent (Figure 40). The uncertainty of the covariance

measurements, 2 mol m−2 year−1, exceeds the average annual flux over the

ocean of 0.5 mol m−2 year−1, precluding its use over large areas of the ocean.

The profile method is based on measuring small concentration differences

several meters apart vertically within the marine boundary layer when surface
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Figure 40: Observations and fits to CO2 covariance fluxes from the north
Atlantic (solid squares) and equatorial Pacific (open triangles), where winds
were weaker than in the north Atlantic [6]. Equations 32 and 33 in the paper
are reproduced above as (3) and (4).

momentum and buoyancy fluxes control dynamics of the marine boundary

layer, allowing application of Monin-Obukhov similarity scaling. Then,

F = ua
∗(c(z1) − c(z2))/R1,2 (C-15)

where ua
∗ is the friction velocity in air, and, during neutral conditions, the

transfer resistance is R1.2 = κ−1 ln(z2/z1) with κ = 0.41 for von Karman’s

constant. During GasEx-1998 and GaxEx-2001 profile fluxes agreed with

those from the covariance method.

C.2 Measuring CO2 Concentrations Autonomously

Until recently, concentrations of carbon in the ocean could be measured only

by researchers catching water samples from ships. This began to change sev-

eral years ago when the National Ocean Partnership Program (NOPP) began
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developing affordable bio-carbon sensors that can be added to autonomous

ocean vehicles, followed by DOE support for the Carbon Flux Explorer which

since 2001 has been obtaining autonomous measurements of particulate or-

ganic carbon (POC) and particulate inorganic carbon (PIC) [1]. Attached

to the Sounding Oceanographic Lagrangian Observer (SOLO), the Explorer

obtains profiles of the upper kilometer at a rate that can vary from a few

hours to several weeks as the float drifts through the ocean, transmitting the

previous profile every time it surfaces [1, 2]. These observations are concen-

trating on the rate at which POC and PIC fall out sink through the water

column to ultimately settle on the sediments.

To obtain dissolved CO2, it is necessary to measure the entire carbon sys-

tem, requiring simultaneous measurement of nitrate and pH in addition to

particulate carbon. Nitrate sensors have recently been deployed on profiling

Lagrangian floats [3], and pH sensors with the required precision are being

developed by the Monterey Bay Aquarium Research Institute (MBARI) and

the University of Washington (S. Riser, personal communication, 2010). If

the development succeeds, autonomous CO2 measurements should be possi-

ble in a few years.

Once the sensors are developed, the issue for a carbon emissions treaty is

whether and how they should be deployed. Global coverage is provided by

Argo floats; somewhat more than 3,000 yield very good coverage of most

of the ocean (Figure 41). Floats drift at depths of 2,000 m for about 10

days, when they take a profile while rising and remain on the surface while

transmitting the data via Iridium. Because Argo floats cost about $15,000

apiece, adding carbon sensors would greatly increase the cost of a global

program, but it may be possible to obtain adequate coverage by adding

carbon sensors to a subset, say one in ten. Using global coupled atmosphere-

ocean models to simulate different populations of carbon floats should guide

the decision.

Drifting with ocean currents, floats are not constrained by Extended Eco-

nomic Zones, but some countries, such as China, remain nervous about them
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Figure 41: Distribution of Argo floats on 14 July 2010.

and would react if floats were deliberately released nearby to monitor their

emissions, as the Naval Oceanographic Office learned after releasing some

in the South China Sea. If negotiated as part of a treaty, however, gliders

would provide a means of maintaining sensors at specified locations. Un-

powered like floats, gliders can follow specified tracks or maintain station by

navigating with tail fins during dives and climbs.

C.3 Monitoring Land Emissions from Ships

Seaborne sensors offer the prospect of monitoring emissions from coastal

states, particularly uncooperative ones lacking nearby cooperative countries

(Figure 42). [5] demonstrate how effectively data from a few offshore mea-

surement stations used with atmospheric transport models can pinpoint sites

emitting HCFC-22 and HFC-23 in China. Sensors on merchant ships reg-

ularly sailing near countries of concern may offer equally good or better

possibilities for monitoring a carbon treaty as well as the Montreal Conven-

tion. At present, however, whether these measurements can be legally made

is uncertain and contentious.

Although the U.S. has not ratified the Law of the Sea Treaty, our State De-

partment requires U.S. oceanographic research ships to follow its provisions
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Figure 42: Shipping lanes colored by the number of journeys per year.

and request permission before making water measurements within Exclusive

Economic Zones (EEZs) of any country. EEZs extend 200 nautical miles

beyond the country’s territorial waters, generally considered as extending 12

nautical miles from their coast. In some cases, countries consider their EEZ

as beginning at the edge of their continental shelf, defined as the 200 meter

isobath.

When diplomatic approval has not been obtained, NOAA research ships also

stop atmospheric sensors, except standard meteorological balloons. Check-

ing with some Law of the Sea experts, however, reveals that there is no basis

under the treaty for limiting atmospheric research measurements in the EEZ

(Prof. Ed Miles, Univ. Washington, personal communication), although

grounds exist for banning them in territorial waters. Most pertinent to mon-

itoring carbon, however, measurements in the EEZ could not be used in a

legal case prosecuting a country for non-compliance. For measurements like

these to have legal force, they must be established as part of a carbon treaty.

C.4 Process Teams

In some cases presented to us, poor communication between atmospheric

modelers and measurers limits progress. A similar situation was recognized
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several years ago by oceanographers concerned with climate models. Because

the ocean is the primary heat sink of earth’s climate system, correct repre-

sentation in models of how mixing distributes heat vertically is essential for

predicting climates beyond a few years ahead. Great progress has been made

by observationalists and modelers, neither of whom were reading the other’s

literature or understanding their limitations and constraint.

To remedy the situation, an ad hoc group recommended forming mixing

process teams, combining measurers and modelers, working together for sev-

eral years to develop parameterizations of observational results considered

ripe for incorporation into models. NSF’s Physical Oceanography Program

adopted the suggestion, requesting proposals for suitable topics and funding

the first groups in 2003. Termed Climate Process Teams (CPTs), groups

can recommend observations or numerical analysis needed to advance their

topic in addition to developing parameterizations. Teams meet for two to

three days at intervals of six months to a year, hiring a post doc or two and

some doing limited data analysis or model runs. The object is to take top-

ics ready for rapid progress once communication barriers are broken down,

not to start new areas of research. Annual reports by the PI allow program

managers to determine that progress is being made or decide that the topic

or investigators are not ready and terminate funding.

One of the most successful, the Gravity Current Entrainment Climate Pro-

cess Team (CPT) was established to find means of representing mixing in

overflows ocean basin to another [4]. For instance, Mediterranean water

overflowing the Strait of Gibraltar has a density that would take it to the

bottom of the north Atlantic, but it ends up near 1,200 m depth because it

mixes intensely while flowing across the continental shelf and slope. Neither

the strait nor the overflow occupy more than 1 or 2 grid cells in coupled

global models, making impossible correct representation of the mixing. Ow-

ing to the CPT, the best available information has been incorporated into

useful parameterizations [4], and the need for additional measurements has

been highlighted. A another round of proposals, addressing different topics
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was recently funded.

Jason recommends that DOE develop a similar program bringing together

modelers and observationalists on carbon-related topics.
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D APPENDIX: Isotopic Signatures

D.1 Dilution by fossil carbon

Fossil carbon contains no 14C and is about 18 parts per thousand (%◦) de-

pleted in 13C compared to atmospheric carbon. An elementary calculation

shows that adding a mass δMf of fossil carbon to an atmosphere containing

a mass Ma of pre-industrial carbon of isotopic fraction xn and Mf of fossil

carbon of isotopic fraction xf produces, to first order in δMf/(Ma, Mf ) � 1,

a mixture of isotopic fraction

δx

x
≈ δMf(xf − xn)

Ma

(Ma + Mf )(Maxn + Mfxf)
. (D-16)

For 14C, xf = 0 and this reduces to the obvious result

δ14 ≈ −
δMf

Ma + Mf

. (D-17)

For 13C, xf − xn ≈ −0.018xn, so that to lowest order in this small quantity

δ13 ≈ −0.018xnδMf
Ma

(Ma + Mf )2
. (D-18)

At present Ma/(Ma + Mf ) ≈ 0.7, so that δ13 ≈ 0.013δ14, and is not likely to

be measurable.

D.2 Carbon 14

Carbon dioxide is a common constituent of the atmosphere that is exchanged

with the soil and oceans by natural processes modulated diurnally, seasonally,

and annually. It is difficult to measure anthropogenic increases on short time

scales, especially when the emissions must be spatially resolved. The input

of CO2 by fossil-fuel burning, which dominates the anthropogenic emissions,

bears distinctive signatures in the distribution of carbon and oxygen isotopes

and in combustion products other than CO2 itself.
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The gold standard in this respect is 14C, or rather 14CO2, because its ra-

dioactive decay has removed it almost completely from fossil fuels, whereas

it is produced in the atmosphere and biosphere by cosmic-rays from which

underground reservoirs of fossil fuels are naturally shielded. On the other

hand, the 5730-year half-life of 14C is sufficiently long that its abundance

in most living things is in equilibrium with that in the atmosphere, apart

from some isotopic fractionation that accompanies photosynthesis. Thus,

the burning of fossil fuels dilutes the mixing ratio of 14C relative to the

stable isotopes 12C and 13C in the air, in plant and animal tissue, and in

agricultural products. This dilution, called the Suess effect, is conventionally

quantified by Δ14C, defined in such a way [1] as to correct for photosyn-

thetic fractionation and usually expressed in parts per thousand (%◦) such

that (Δ14C)fossilfuels = −1000%◦ (Figure 43). If [CO2]m is the total measured

molar fraction of CO2 in an air sample summed over isotopic species, then

the molar fraction due to fossil-fuel burning is

[CO2]ff = [CO2]m ×
Δ14Cbkg −Δ14Cm

Δ14Cbkg + 1000%◦

, (D-19)

in which “bkg” refers to a background level that need not be pristine.

The long-term trend in the dilution of 14C exhibited by Figure 43 is not due

solely to fossil-fuel emissions. Atmospheric nuclear testing nearly doubled

the atmospheric inventory of 14C, an event from which Δ14C is only now

recovering (Figure 44). The rate of recovery is obviously much too rapid to

be explained by radioactive decay. Thus, the nuclear experiments of the Cold

War have been used to calibrate the rate of exchange of CO2 between the

atmosphere and the land and sea [7].

Plants, including agricultural crops, have been used as natural sample col-

lectors for measuring Δ14C and hence [CO2]ff . An example is shown in Fig-

ure 45, taken from a study reported in [8]. The authors collected samples of

wild winter annual grasses from 128 sites across California. These were an-

alyzed for their Δ14C content, with the results shown in the left hand panel

of Figure 45. The numbers on the map are hard to make out in this repro-
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Figure 43: Δ14C time series from the seven global sampling stations of the
Scripps Institution of Oceanography [2, 3].

Figure 44: Production of 14C by atmospheric nuclear testing [3].
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Figure 45: Measured (left) and predicted (right) Δ14C in California. The
measurements were based on samples of wild grasses, and the models used
(measured) NOx concentrations as proxies for the CO2 sources [8].

duction, but the colors and accompanying legend show that Δ14C < 25%◦

in Los Angeles (red), as compared to a background level Δ14C ≈ 60± 2.5%◦

on the North Coast and comparably remote areas. (The background level

is positive—higher than the natural equilibrium between cosmic-ray produc-

tion and 14C decay—because of the residual influence of atmospheric nuclear

tests.) The predictions shown in the right hand panel were made with mod-

els for atmospheric transport and grass growth; the transport model required

specification of the fossil-fuel emissions, for which previous measurements of

NOx on a 36-km grid, scaled to a bottom-up inventory of statewide fossil-fuel

emissions, were used as proxies. In this study at least, the level of agreement

between model and measurement is quite impressive:

Average measured Δg [Δ14C of annual grasses] levels in Los An-

geles, San Francisco, the Central Valley, and the North Coast [of

California] were 27.7±20.0, 44.0±10.9, 48.7±1.9, and 59.9±2.5%◦,

respectively. Model predictions reproduced regional patterns rea-

sonably well, with estimates of 27.6 ± 2.4, 39.4 ± 3.9, 46.8 ± 3.0,

and 59.3±0.2%◦ for these same regions and corresponding to fossil

fuel CO2 mixing ratios (Cf) of 13.7, 6.1, 4.8, and 0.3 ppm [8].

Note that in Eq. 1-1 Δ14Cbkg ≈ 60±2.5%◦ so that the measured North Coast
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Δ14Cm = 59.3 ± 0.2%◦ corresponds to negligible fossil fuel sources, and that

regions with significant sources of fossil carbon have smaller Δ14C.

This shows what can be achieved in an economically well-developed, fully

accessible region by a judicious combination of dense sampling and careful

modeling. Similar studies have been carried out across the U.S. using maize

[9], and in Europe using wine [10]. The quoted uncertainties in the inferred

concentrations of CO2 are on the order of 1 ppm in all three studies.

D.3 Relevance to Treaty Verification

The important question for the present study is, to what accuracy could the

fossil-fuel CO2 fluxes or concentration be determined via Δ14C in a “non-

cooperative” country? There is, first of all, the problem of obtaining the

necessary samples. Possibly this could be done by relying on agricultural

imports, including not only food products but also lumber, bamboo, cotton,

etc. It would be necessary to know where the original plants grew, to an

accuracy determined by the requirements of the model: perhaps a few tens

of kilometers. This information may be difficult to obtain for most products.

For some luxury goods, however, the specific growing region is proudly ad-

vertised. Such is the case with French and German wines (although the

grapes in any given wine are often drawn from several vineyards), but Eu-

rope must be counted as a cooperative region. It is also the case for some

high-end Indian teas; unfortunately, the main tea-producing regions of that

country are concentrated in the extreme north, east, and south, rather than

being spread throughout it. Still, if some proxy analogous to the NOx used

in Ref. [8] in California can be employed to estimate the spatial distribution

of sources (e.g., CO, sulfur, or particulate emissions), then in combination

with transport models and appropriate meteorological data, accurate Δ14C

measurements from a few such regions might allow the year-to-year trend in

net fossil-fuel CO2 emissions to be usefully constrained. The extent to which

this is realistic could be clarified by re-analyzing the studies in Refs. [8, 9],
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and if necessary by performing more such studies within cooperative regions.

The principal fossil-fuel emitters other than the U.S.—India and China—

though perhaps not fully cooperative with all the desires of a carbon-treaty

verifier, are far from being closed societies. Foreigners can travel within these

countries rather freely, and so it might not be very easy for their governments

to prevent the direct collection of plant samples from rural areas without dis-

rupting the international commerce and tourism upon which these countries

rely for much of their economic growth. Meteorological data are restricted

mainly by the prevalence and sophistication of measurement and communi-

cations infrastructure rather than by secrecy.

The utility of Δ14C observations from sparse but fully controlled stations to

monitor emissions reductions in Europe has been addressed [11]. Analyzing

two decades of data collected at two sites in Germany, they observed year-to-

year fluctuations in the inferred (from local Δ14C compared to tropospheric

background) fossil-fuel CO2 concentration that cannot plausibly be due to

fluctuations in the actual emissions (because these are believed to be rather

constant), and which they therefore attribute, in roughly equal measure, to a

combination of measurement uncertainties and biogenic processes on the one

hand, and to unmodeled transport effects on the other. On this basis, they

estimate that emissions reductions in southern Germany and eastern France

of ≥ 26% over a five year period could be detected with 95% confidence from

their more remote site (Schauinsland, in the Black Forest), and ≥ 7% from

the more polluted site (Heidelberg). Similarly, [12] estimated that net annual

global [CO2]ff emissions, as traced by observations of Δ14C by a network of 8

remote sites spread across both hemispheres, are uncertain at the 25% level;

they based this conclusion on the extent to which models of these data are

able to explain the north-south difference in Δ14C, and particularly its inter

annual variation.

Biases in the inference of local [CO2]ff concentration (rather than flux) from

Δ14C measurements associated with the choice of background site, where the

latter is supposed to be sufficiently remote as to represent a hemispherical
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average were examined in Ref.˜[]t09. These authors concluded that it is

possible to identify and correct for these biases, and that a single Δ14C

measurement of 2%◦ precision (present state of the art) would be sufficient to

infer [CO2]ff concentration to 1 ppm. They freely acknowledge, however, that

the inference of [CO2]ff fluxes from concentrations is dominated by modeling

uncertainties.

D.4 The Suess Effect

In 1955 Suess discovered that the 14C concentration of modern carbon (at-

mospheric and photosynthetic) is less than that of pre-industrial carbon,

allowing for radioactive decay. He explained this as a consequence of the

dilution of atmospheric CO2 by fossil carbon.

The atmospheric carbon cycle is more complicated than simple addition of

anthropogenic carbon to a pre-industrial level of CO2. Carbon is exchanged

among the atmosphere, biosphere, and ocean, and these exchanges are not

understood quantitatively. The importance of these processes is shown by

the results of [14] (among many other studies). These authors found δ14 =

−20%◦ in comparing pre-industrial levels with levels from 1950 (after 1950

large positive δ14 are found because of production by atmospheric nuclear

explosions). Yet modern estimates of pre-industrial (275 ppm) and 1950

(310 ppm) CO2 levels would imply, if atmospheric dilution were the only

relevant process, δ14 ≈ −113%◦.

In order to understand the quantitative relation between anthropogenic emis-

sions and atmospheric CO2 levels, it is necessary to model these exchanges.

Their influence is also evident in the decline of atmospheric 14C since the ces-

sation of atmospheric nuclear explosions at a rate much greater than would

be produced by anthropogenic dilution and radioactive decay alone (see Figs.

?? and 44).

If there is not sufficient time for significant exchange with the ocean or bio-
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sphere these processes will not affect the downwind signature of regional

anthropogenic emissions. Although that might be expected to be the case

for sensors only hundreds of km downwind that sense emissions within the

previous day, this may not always be the case. For example, a sensor on a

buoy will be immersed in the marine micro-boundary layer in which air-sea

exchange is rapid because of its thinness; it may observe δ14 and CO2 concen-

trations significantly different than the average of the 1–2 km atmospheric

boundary layer. In addition, scavenging by rain may be a significant means of

removing CO2 from the atmosphere, and may affect its isotopic abundances

even near its source.

D.5 Measuring 14C

A difficulty with 14C as a tracer of fossil-fuel carbon is the rarity of this

isotope, approximately one part in a trillion compared to 12C. Remote sens-

ing of 14C (e.g., by absorption spectroscopy) is impractical. Instead, sam-

ples must be collected and taken to a laboratory where sensitive equipment

measures the number of 14C atoms in the sample by counting radioactive

decays. At its natural concentration (even after molecules other than CO2

are removed from the air sample by chemical processing), the count rate in

samples of practical size is low enough that days to weeks are required for an

accurate measurement of Δ14C. Alternatively, accelerator mass spectrom-

etry (AMS) counts 14C atoms by separating them from the other isotopes

without relying on radioactive decays; analysis times per sample are minutes

to hours, and the samples are only milligrams of carbon as opposed to grams

for direct counting sample. Accuracies at the level of a few parts per thou-

sand are typically reported, and throughput is several thousand samples per

year, ranging up to more than ten thousand for the LLNL AMS [5, 6]. AMS

equipment is bulky and power-hungry. Compact devices that are several

meters on a side are being developed, including gas-source systems [17].
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D.6 Stable Carbon Isotopes

The 14C/12C ratio is the traditional means of distinguishing CO2 produced

by combustion of fossil vs. modern carbonaceous material. However, an ad-

ditional and independent datum is valuable. Consider, for example, a treaty

the commits a country to limit its combustion of fossil fuels in electric gen-

eration and transportation. In verifying compliance it would be necessary to

distinguish those sources of 14C-free CO2 from smoldering coal or old peat

beds (or old soil carbon). It would also be necessary to distinguish between

rapid combustion in modern generators and vehicles and slower combustion

of coal in traditional fireplaces. These distinctions might require the evidence

from oxygen isotopic abundances, because all these fuels are free of 14C.

Isotopes fractionate at sources and sinks, through phase changes, and in

chemical reactions as a result of kinetic and thermodynamic effects at the

molecular level. Variations in the bulk isotopic composition of CO2 (i .e.,
13C/12C, 18O/16O, 17O/16O) play a potentially important role in quantifying

carbon sources and sinks. Fractionation of these elements during chemical,

physical, and biological processes results in potentially unique labels. 13C,

with roughly 1.1% the abundance of 12C, has been useful for constraining

the evolution of the chemical composition of the atmosphere and assessing

and quantifying the uptake of CO2 in the oceans, land, and biosphere, as

well as distinguishing natural from anthropogenic carbon in the atmosphere.

The primary issue is that the individual stable isotopes of carbon and oxy-

gen from different sources in general have overlapping compositions and be

affected by subsequent exchange reactions. However, the overlap in isotopic

compositions from different sources typically is not identical, and additional

constraints on CO2 sources can be obtained by taking all the stable isotope

data into consideration and coupling the results with concentration measure-

ments and different flux models.

The isotopic composition of a sample is conventionally defined as δ = (Rsample/

Rstandard − 1)× 1000. For the isotopes of interest here, the standards are the
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Vienna Pee-Dee Belemnite (V-PDB) carbonate for carbon isotopes and the

Vienna Standard Mean Ocean Water (V-SMOW) for oxygen (and hydrogen;

see Ref. [18]). Representative values for δ13C include -24 %◦ and -27 %◦ for

coal and lignite, respectively; -20 %◦ to -75 %◦ (mean of -41 %◦) for natural

gas; approximately -5 %◦ for volcanic CO2, which is derived from the man-

tle; a spread in δ13C values centered around -25 %◦ for crude oils, which is

derived from the precursor molecules [18].

Because biologically derived carbon is light (negative δ13C); the change in

δ13C of atmospheric CO2 of ∼ 1.5%◦ over the past 100 years is consistent

with the rise of anthropogenic emissions. However, there are large seasonal

and diurnal variations, which are reflected in the isotopic “Keeling curve”

shown in Figure 46. The seasonal cycle dominates the terrestrial biosphere

of the northern hemisphere, and the long term trend and difference between

the hemispheres in these datasets reflect the effects of fossil fuel emission.

Figure 46: Seasonal and long-term trends in concentrations of δ13C and δ18O
of atmospheric CO2 measured in the northern and southern hemispheres [18].

156



This rise in atmospheric anthropogenic CO2 has infiltrated the isotopic com-

position of other pools. The ocean-atmospheric isotopic fluxes vary signifi-

cantly both on spatial and temporal scales (Figure 47). In contrast to the

effect of biological processes, atmospheric CO2 depletes surface ocean dis-

solved inorganic carbon in 13C. The exchange of that isotope with the ocean

is based predominantly on physical equilibrium, which gives rise to two ex-

change fluxes that are isotopically distinct with different contributions to the

atmospheric 13C. The 13C values of fossil fuels and the land-use produced

CO2 in the atmosphere are imprinted with the photosynthetically produced

carbon, which discriminates against 13C. There is no evidence for fractiona-

tion of carbon isotopes on burning of fossil fuels, so the isotopic distribution

from the sources is assumed to be that imparted to the atmosphere from

the fuels. Superimposed on the dominant source-sink fractionation are dise-

quilibrium effects which arise from different time scales over which isotopic

equilibrium is reached for the ocean-atmosphere system and mineralization

of total ocean organic matter [18].

Figure 47: Annual mean forcings on δ13C values of CO2 [18].

D.7 Oxygen Isotopes

There are three stable isotopes of oxygen: 16O, 17O, and 18O. δ18O of CO2

derived from volcanoes and permafrost depends on δ18O of the water present

in the system, i.e., the δ18O of the magmatic and soil water, respectively.
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The δ18O of CO2 produced by combustion of fossil fuel depends on the C/H

in the fuel and equilibration temperature between CO2 and H2O exhaust. A

complicating factor is that the 18O of CO2 can be reset during its transport in

air (through exposure to water, especially leaf water). There can be isotopic

fractionation associated with photochemistry [e.g., O(1D) + CO2], some of

which can give rise to non-mass dependent isotope effects [18]. Aircraft

measurements of the composition of stratospheric CO2 with respect to all

three oxygen isotopes in whole air samples show anomalous enrichments in
17O and 18O [19]. The correlation of the isotope anomaly with simultaneous

N2O measurements demonstrates that 17O in CO2 is a potentially useful

tracer.

D.7.1 Oxygen Isotope Diagnostics

It has long been known [20] that oxygen chemistry produces measurable frac-

tionation of its stable isotopes. Usually this fractionation may be approxi-

mated as proportional to the mass difference (or a power of its reciprocal),

a natural consequence of the small isotopic shifts in vibrational frequencies

and therefore in the reaction energies, but in some cases the fractionation is

independent of the mass difference, or has a more complex dependence. Oxy-

gen isotopic fractionation has been the subject of hundreds of publications

and is discussed in a recent textbook [21].

These fractionations distinguish among various low temperature (respira-

tory) oxidation pathways, between them and high temperature (burning)

oxidation, and among various photosynthetic pathways. There is an exten-

sive research literature. In general, oxygen isotope ratios in the product CO2

depend on both the temperature of reaction [22] and on the specific biochem-

ical pathway. Studies include the differential isotopic fractionation between

cyanide-resistant and cyanide-sensitive respiration [23], and the isotopic frac-

tionation in combustion [24].

Perhaps surprisingly, isotopic fractionation in combustion is significant, con-
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trary to the expectation that at high temperatures small isotopic differences

in bond energies would not lead to fractionation. Even low temperature res-

piration requires large energies to break covalent bonds, and the fact that

fractionation occurs in respiration is a reason to anticipate measurable iso-

topic effects in combustion. The rate of combustion may influence the iso-

topic abundances of the product CO2 [24]. This offers, for example, the

prospect of using these abundances to distinguish between rapid burning of

fossil fuels and smoldering combustion of agricultural waste, soil humus, and

coal beds.

Not only are there significant differences in the mass dependence of the oxy-

gen isotope fractionation between various biochemical pathways, both in oxy-

gen production (photosynthesis) and in oxygen consumption (respiration),

but the differential fractionation of the three stable isotopes depends on the

process [25]. This result implies that measurement of the two independent

isotopic ratios (17O/16O and 18O/16O) provides two independent constraints

on the production of the CO2, rather than only one, as would be the case if

all fractionations had the same dependence on isotopic mass ratio.

Oxygen isotope ratios in the products of photosynthesis may also depend

on the oxidative pathway [26]. These contribute to the isotopic ratios in

the products of oxidation, either biochemical or by combustion (some of

the oxygen in the CO2 is atmospheric, but some of it derives from oxidized

compounds, such as cellulose, that contain oxygen).

It is therefore possible that, even if there is no immediate application to mon-

itoring CO2 emissions, study of oxygen isotopic abundances in CO2 would

contribute indirectly by aiding the understanding of global the carbon cycle.

D.8 Isotope Clumping

Although the overlap and variation of ratios of the above stable isotopes

limit their utility as unique fingerprints for specific sources, their ’clumping’
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in molecules can provide additional information. Clumping of isotopes is

the thermodynamic stabilization of orderings of isotopes in molecules. This

effect enhances the formation (relative to a statistical distribution) of specific

isotopomers, which are molecules with the same number of isotopes but in

different positions (Table 5) [27].

Table 5: Isotopologues

Mass Isotopologue Relative abundance

28 14N2 99.3%
29 14N15N 7.30 × 10−3

30 15N2 1.34 × 10−5

32 16O2 99.5%
33 17O16O 7.56 × 10−4

34 18O16O 4.00 × 10−3

17O2 1.44 × 10−7

35 18O17O 1.52 × 10−6

36 18O2 4.00 × 10−6

44 12C16O2 98.4%
45 13C16O2 1.11 × 10−2

12C17O16O 7.48 × 10−4

46 12C18O16O 4.00 × 10−3

13C17O16O 8.40 × 10−6

12C17O2 1.42 × 10−7

47 13C18O16O 4.44 × 10−5

12C18O17O 1.50 × 10−6

13C17O2 1.60 × 10−9

48 12C18O2 3.96 × 10−6

13C18O17O 1.68 × 10−8

13C18O2 4.45 × 10−8

Notes: Nominal cardinal mass in AMU; assuming 15N/14N ratio equal to atmospheric N2,
17O/16O and 17O/16O ratios equal to the V-SMOW standard, and 13C/12C ratio equal to

the V-PDB standard.

Early measurements of this effect in carbon dioxide suggests it could be rele-

vant to treaty monitoring of anthropogenic emissions. The ratio 16O13C18O/16O12C16O

(47CO2/
44CO2) can distinguish CO2 of automobile exhaust from background

signals [34]. The temperature of formation was recorded in the 47CO2/
44CO2
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ratio. Again, CO2 exchanges oxygen readily with water, so the temperature

recorded by the emitted gas was lower than the combustion temperature due

to reactions with water in the tailpipe, which was ∼100oC. Nevertheless, the

signal for CO2 was distinct and could be readily measured using standard

mass spectrometric techniques.

Subsequent measurements have shown an enrichment of 47CO2/
44CO2 in the

stratosphere, perhaps associated with the photochemically promoted O(1D)

+ CO2 reaction [28]. The measurements provide evidence for an exchange

of O-isotopes between highly enriched ozone and CO2 in the stratosphere.

Despite the low concentrations, the isotopic signals are large and measurable,

and show a 47CO2 clumping signal. CO2 derived from high temperature

processes is relatively depleted in clumping effects, compared to CO2 derived

from low temperature processes; notably, the clumped isotopic composition

of respiratory CO2 is depleted relative to the equilibrium values [33].

As for the oxygen isotopes alone, clumped isotope signals are also affected

by water reactions. However, the resetting of the clumped isotope (and oxy-

gen isotope) compositions of atmospheric CO2 though the exchange reaction

with water does not occur instantaneously. Thus, the characteristic isotopic

signals of different CO2 sources masked by the exchange are not completely

removed [29], thereby allowing inferences about carbon sources. Temporal

monitoring of CO2 isotope compositions (e.g., observed seasonal and diurnal

variations) have been able to measure these signals [29].

The clumped isotope composition of CO2 could be used as a tool to dis-

tinguish CO2 derived from high temperature processes (e.g., volcanoes and

power plants) and low temperature processes (e.g., permafrost); the higher

temperature, the smaller clumping effect. The clumping associated with

other anthropogenic emissions vs. that of natural sources has not yet been

investigated in detail. The technique opens up the prospects for direct mea-

surements that could be diagnostic of specific combustion sites.

The mass resolving power of conventional gas source mass spectrometers
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(M/ΔM ≈ 1000) is sufficient to identify clumping signals in CO2. Distin-

guishing among isotopologues of other greenhouse gases can require higher

resolution. For methane, calculations of relative energies of 12CD2H2 and
12CDH3 show that measurements of their ratio would permit the discrimi-

nation of formation temperatures of ∼ 200 ◦C to be determined, thereby al-

lowing different methane sources to be identified. This type of measurement

requires M/ΔM = 60,000, which is possible with high resolution tandem

mass spectrometers being built [33]. Similar measurements could quantify

sources of other greenhouse gases as well as higher hydrocarbons. It is useful

to point out here that coupling of these measurements with fluxes up-welling

and down-welling gas would provide additional constraints.
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E APPENDIX: Statistical Data Assimilation

This appendix is a summary of methods for transferring information from

observations of a physical (or other) experimental or field system to a model

developed by thinking (separately) about the dynamics of the underlying

system. In geophysical contexts this is known as data assimilation. The

goal is the estimation, conditioned on the data, of the fixed parameters and

unobserved state variables of the model at the end of an observation period

t = T . This allows predictions of the model state x(t > T ) using the model

dynamics. It can also be used to test the model and suggest where to look

in state space to improve the model.

The formulation of data assimilation given as an exact path integral over the

model state through the observation period. The “saddle path” evaluation of

the integral representation of the statistical questions is the familiar 4DVar

formulation of the data assimilation problem.

E.1 JASON’s ‘Carbon’ Problem

To identify sources of carbon, or for that matter any atmospheric tracer

gas, one envisions solving the linear transport equation for the concentration

c(x, y, z, t) = c(r, t) of that constituent. This equation is formulated by

Bocquet [1] for the ratio of the concentration and the density ξ(r, t) = c(r,t)
ρ(r,t)

∂ξ(r, t)

∂t
+ ∇r · (u(r, t)ξ(r, t)) = K∇2ξ(r, t) + s(r, t), (E-20)

but, as discussed by Bocquet, one may neglect local changes in the density

as one follows a minor tracer constituent, and take ρ(r, t) = constant. Then

we will be using

∂c(r, t)

∂t
+ u(r, t) · ∇rc(r, t) = K∇2c(r, t) + s(r, t), (E-21)

to characterize the transport of the tracer concentration from spatially dis-

tributed and time dependent sources s(r, t). K is a diffusion constant, and
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u(r, t) is the local wind velocity; ∇r · u(r, t) = 0 The idea is that with suf-

ficient observations of the concentration, we should be able, assuming we

know the wind field u(r, t), to identify a source term s(r, t) that gives rise

to the observed concentration field. Given the deterministic, or stochastic

wind, u(r, t) this is a linear problem.

The full problem, as there are circumstances where the constituent can af-

fect local radiative transfer, thus through local heating or cooling the local

temperature, and thus through the equation of state the driving forces (e.g.,

pressure gradients) the local velocity field, namely, the wind, is more complex

and, because of the advection in the Navier-Stokes equation

∂u(r, t)

∂t
+u(r, t)·∇u(r, t) = −

∇p(c(r, t), T (r, t), ...)

ρ0
+ν∇2u(r, t)+Fext(r, t),

(E-22)

is nonlinear. Temperature transport, energy conservation,

∂T (r, t)

∂t
+ u(r, t) · ∇T (r, t) = κ∇2T (r, t) + S(r, t), (E-23)

adds additional nonlinearity. The full problem requires tracing the wind,

through observations, the temperature, through observations, and other fields

(entropy, salinity, ...) if necessary.

We will give a formal structure for using observations on c(r, t), T (r, t), and

u(r, t) to determine parameters in these equations: transport coefficients,

sources, constants in the equations of state, ... for the full nonlinear prob-

lem, and we will discuss how to implement this formal structure when the

wind is given, either deterministically or as a known Gaussian distribution

about a mean wind, for the concentration of a tracer gas (we call it car-

bon) to estimate the fixed parameters, the sources, and the values of the

concentration c(r, T ) at the end of an observation period {t0, ..., T}.

E.2 Introduction

Assimilating the information in observed data into models of a dynamical

system when there are errors in the measurements, errors in the models, and
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uncertainty about the precise state of a system when the assimilation process

begins has stimulated discussions about placing data assimilation (DA) in a

probabilistic setting [2, 3, 4]. The setting we have in mind is the following:

a physical system is observed and a D-dimensional model of the system is

developed based on some relevant principles. How the model is developed

is not part of the DA problem, but we want to use DA to establish various

aspects of the dynamical rules including estimates of any unknown fixed

parameters in the model formulation, estimates of the state variables which

are not observed, and estimates of any external forcings of the dynamics.

Prediction using a model requires information, preferably accurate, on any

fixed parameters in the model, and on the state variables of the model x(T )

when prediction begins. In linear models this is a challenge, and in nonlinear

models it has difficulties associated with intrinsic instabilities in the model

that must be addressed. There is, interestingly, a silver lining to this. One

issue, not generally addressed in the literature, is the question of how many

observations one must make to enable the accurate estimation of the state

variables x(T ) and the parameters. There are two aspects to this question:

(1) how often must observations be made, and (2) how many observations

are required at each time a set of measurements are performed. We comment

on both.

To define notation, we review the formulation of DA. Most systems of interest

are described by model partial differential equations (PDEs) describing fields

φ(x, y, z, t) = φ(r, t) satisfying equations of the form

∂φ(r, t)

∂t
= F(φ(r, t),∇rφ(r, t),p, s(r, t)), (E-24)

where F describes the linear or nonlinear dynamics of the dynamical variables

φ(r, t), p are a set of fixed parameters, typically transport coefficients, con-

ductivities, densities, etc, and s(r, t) are external forces driving the dynamics

of the fields φ(r, t).

These equations are now discretized in both space and time to represent the

observation points and to provide a framework for numerical solution of the
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dynamical problem. Any indices on the fields φ(r, t) indicating components

of vectors (velocity, for example, or components of the overall degrees of

freedom), and the spatial labels in the discretization of r = (x, y, z) are

incorprated into a label a = 1, 2, ..., D. The model degrees of freedom are

now called xa(t) and the PDEs have become a D-dimensional set of ODEs:

dxa(t)

dt
= Fa(x(t),p, s(t)). (E-25)

These equations are now solved numerically in discrete time. We label time

as tn or indicate time by the integer index n, and in this way we change our

differential equations to discrete time maps relating the state of the system

at time tn, x(n), to the state of the system one step later x(n + 1). The

numerical scheme for solving the differential equations can be this discrete

time representation. Generally it is an implicit relation of the form

ga(x(n + 1),x(n),p, s(n)) = 0; a = 1, 2, ..., D. (E-26)

If we can arrange for the discrete time dynamics to be explicit, we can write

this in the equivalent form

x(n + 1) = f(x(n),p, s(n)), (E-27)

and this dynamical rule may be linear in the x(n) or nonlinear in the x(n).

In this formulation we see that the forcings are exactly on the same footing

as the fixed parameters–i.e. there is no differential equation for them–except

that there are many quantities s(n) which we must estimate based on the

dynamical rule and the measurements. The boundary conditions for the

PDEs enter the discrete time formulation as constraints on the solutions

involving further parameters, all of which are added to the p.

Measurements are now made at discrete times within a temporal window

{t0, t1, ..., tm = T}. We call these measurements yl(n); l = 1, 2, ..., L, and

typically L < D, often L << D.

Further, we must recognize that the measurements are noisy, the model has

errors, and the state of the system at the initiation of measurements t0,

namely x(0), is known only with uncertainty.
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To connect the model dynamics and the measurements, we must make those

measurements a further part of our model and relate the L observations

at each time {t0, t1, ..., tm = T} to the state of the model. In this way

we associate the measurement functions hl(x(n)); l = 1, 2, ..., L with the

observed quantities as known functions of the model dynamical variables. In

estimating quantities associated with the model, states and parameters, we

want to adjust the model so its output x(n) is such that at any observation

time hl(x(n)) matches, using some comparison metric, the observations yl(n).

The fact that L < D means we are faced with what control theorists for many

decades have called the ‘observer’ problem [5]: we have L < D measurements

on a system described by a D-dimensional dynamical system; how large must

L be to allow estimation of all D components of the model state xa(t) and all

the parameters in the model. If L = D, as might be the case, we need only

estimate the parameters, for then the observations give us x(T ) at the end of

the observation period, and we can then use the dynamical rule x(n + 1) =

f(x(n),p, s(n)) to predict forward in time.

The overall model is now set: it consists of the dynamics for the model state

variables x(n), the connection of the measurements yl(n) with the model

states x(n): yl(n) ≈ hl(x(n)), and the set of parameters p comprising fixed

parameters in the dynamical rule x(n) → x(n + 1), in the ‘measurement

functions’ hl(x), in the boundary conditions in the original PDEs, and in the

parametrized forcing s(n).

As a shorthand notation we will now introduce D coordinates which empha-

size the measurements z = [z1, z2, .., zD] = [h1(x), h2(x), ..., hL(x), xL+1, ...xD].

Our task is to use the observations to produce an estimate of the conditional

probability for the state being in the location z(tm) = z(m) at the end of

an observation window {t0, t1, ..., tm = T}, conditioned on the observations

Y(m) = {y(m),y(m − 1), ...,y(0)}. We call this P (z(m)|Y(m)).

The First Step

The discussion of this conditional probability goes back to Jazwinski [6, 4] or
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further. There are two steps: first we use Bayes’ rule to relate the conditional

probability P (z(m)|Y(m)) utilizing m + 1 measurements to the conditional

probability P (z(m)|Y(m− 1)) utilizing m measurements:

P (z(m)|Y(m)) =

{
P (z(m),y(m)|Y(m − 1))

P (z(m)|Y(m − 1))P (y(m)|Y(m − 1))

}
P (z(m)|Y(m−1)),

(E-28)

This is an identity on conditional probabilities. It is usually written as [4]

P (z(m)|Y(m)) =

[
P (y(m)|z(m),Y(m − 1))

P (y(m)|Y(m − 1))

]
P (z(m)|Y(m − 1)), (E-29)

which while correct, does not emphasize the factor

{
P (z(m),y(m)|Y(m− 1))

P (z(m)|Y(m − 1))P (y(m)|Y(m − 1))

}
, (E-30)

as the exponential of the conditional mutual information, in the sense

of Shannon, between the L-dimensional measurement y(m) at time tm and

the D-dimensional state z(m) at the same time, conditioned on the earlier

measurements Y(m − 1):

exp

[
log

{
P (y(m)|z(m),Y(m − 1))

P (y(m)|Y(m − 1))

}]

= exp

[
MI(z(m),y(m)|Y(m − 1))

]
. (E-31)

In a certain practical sense, this difference is not important, but Equation

(E-31) does give a precise information theoretic meaning to the addition of

one more measurement, the one at tm, namely y(m), to the knowledge we

have of the conditional probability distribution of the state of the model at

tm. To see this write from Equation (E-28)

log

{
P (z(m)|Y(m))

P (z(m))

}}
=

MI(z(m),y(m)|Y(m− 1)) + log

{
P (z(m)|Y(m − 1))

P (z(m))

}
, (E-32)

showing that the added information (in nats) arising from one additional

measurement is precisely the conditional mutual information. This suggests
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the view of a communication channel unidirectionally connecting the trans-

mitter (the data source) and the receiver (the model) into which one can put

additional information by making a new measurement. This last result tells

us how much information about the measurement is transmitted through the

channel connecting the data source and the model.

The Second Step

All that said, we now can take the required second step. To relate the

conditional distribution P (z(m)|Y(m − 1)) to P (z(m − 1)|Y(m − 1)) and

then have a recursion relation between P (z(m)|Y(m)) and P (z(m−1)|Y(m−

1)) to allow the determination of P (z(m)|Y(m)) from P (z(0)), we use the

Chapman-Kolmogorov relation

P (z(m)|Y(m−1)) =

∫
dDz(m−1)P (z(m)|z(m−1))P (z(m−1)|Y(m−1)),

(E-33)

which is true for dynamical rules giving z(n+1) from knowledge of z(n). We

may also express this in terms of the original state variables x(n) by noting

dDz(n) =
∂(z(n))

∂(x(n))
dDx(n),

∂(z)

∂(x)
= JL(x) =

∂(h1(x), h2(x), ..., hL(x))

∂(x1, x2, ..., xL)
(E-34)

which is an L × L matrix of derivatives of the measurement functions with

respect to {x1, x2, ..., xL}.

The transition probability P (z(n + 1)|z(n)) is determined by the dynamical

rule. If the dynamics is deterministic, then z(n + 1) = q(z(n),p), and

P (z(n + 1)|z(n)) = δD(z(n + 1) − q(z(n),p)), (E-35)

while if there is model error or finite resolution, the sharp distribution of

a delta function is broadened by some measure of that resolution or error.

Often this might be represented by additive noise, but it may be more general.
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Now take the recursion relation:

P (z(m)|Y(m)) = exp

[
MI(z(m),y(m)|Y(m− 1))

]
∫

dDz(m − 1)P (z(m)|z(m − 1))P (z(m − 1)|Y(m− 1)), (E-36)

and iterate it back from tm to t0 to find, with X = {x(m),x(m−1), ...,x(0)},

P (z(m)|Y(m)) =

∫ m−1∏
n=0

dDx(n)JL(x(n)e[−A0(X|Y)],

=

∫
dXe[−A0(X|Y)],

=

∫ m−1∏
n=0

dDz(n)e[−A0(X|Y)]

=

∫
dZe[−A0(X|Y)], (E-37)

with

−A0(X|Y) =
m∑

n=0

MI(z(n),y(n)|Y(n − 1))

+
m−1∑
n=0

log[P (z(n + 1)|z(n)] + log[P (z(0))]. (E-38)

This is a path integral over paths in z (or x) space through a time window

{t0, t1, ..., tm−1}, namely a mD-dimensional integral.

We can now go back to x space by noting that probability densities in z are

related to their counterparts in x via

P (z)dDz = P (x)dDx, (E-39)

or

P (z) = P (x)
(∂x)

(∂z)
, (E-40)

which involves the inverse of the Jacobian encountered above. Sorting out

the various Jacobians leads to an expression for the quantities of real interest

in data assimilation, the conditional expected values of functions of state
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variables. If a general variable on the path X = {x(m),x(m − 1), ...,x(0)}

through the observation window is written as G(X), we have now

< G(X) >= E[G(X)|Y] =

∫
dXG(X)e[−A0(X|Y)]∫

dXe[−A0(X|Y)]
, (E-41)

with

−A0(X|Y) =
m∑

n=0

MI(z(x(n)),y(n)|Y(n − 1))

+

m−1∑
n=0

log[P (x(n + 1)|x(n)] + log[P (x(0))]. (E-42)

This tells us that the only place the observation function enters the evaluation

of physical quantities of interest is in the mutual in formation term of the

action. There it appears as h(x). No inversions or ‘retrievals’ are required

to evaluate < G(X) > for any quantity of interest.

The path integral formulation is found in [7] with examples of the direct

Monte Carlo integration of the high dimensional integral for a model of some

geophysical interest found in [8] and the trickiness of a saddle path evaluation

of the integral discussed in [9].

E.3 Saddle Path Approximation: 4DVar

A natural and familiar way to approximate integrals such as (E − 41) is to

expand the integrand, here A0(X|Y ) about a minimum path S

A0(X|Y) = A0(S|Y) +
1

2
(X − S)

∂A0(X|Y)

∂X∂X
|X=S(X− S) + ...

∂A0(X|Y)

∂X
|X=S = 0. (E-43)

and evaluate the resulting Gaussian integral to establish corrections to the

path S. This is known as (weak) 4DVar in the geophysics literature. The

‘weak’ means the equations of motion are satisfied in an average way rather

than precisely as in a deterministic (‘strong’) manner.
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Unfortunately, because of intrinsic instabilities in chaotic flows of nonlinear

systems, the procedure of searching for the path S encounters impediments

in the form of numerous local minima making the search unfeasible. Regu-

larizing the search can cure this [9].

In the linear problem we address for the tracer problem with specific wind

field, this should not be an issue.

E.4 How Many Measurements are Required?

Implicit in many discussions of the tracer source reconstruction problem,

one assumes more measurements would always be better. From discussions

of observer theory [5] one knows that this might not actually be necessary.

By this one means that in some problems it may be that parameters and

unobserved state variables may be estimated when L reaches a certain value

(L < D still) and no more may be required. A linear example may serve to

illustrate this. Suppose the original, data generating dynamics is w(n+1) =

M · w(n). M may have eigenvalues outside the unit circle. The ‘model’

system is taken to be x(n + 1) = M · x(n) and we want to construct an

‘observer’ system allowing some measurements of the w allowing an estimate

of all the the x(n) so |x(n) −w(n)| → 0 as time goes by.

One such construction, called a Luenberger observer, is to add to the model

dynamics a term

x(n + 1) − M · x(n) + K(w(n) − x(n)), (E-44)

where K is a constant matrix of dimension D × L and observations of L

states w are available at each time n. The equation for w(n)−x(n) = Δ(n)

is

Δ(n + 1) = (M− K)(Δ(n)), (E-45)

and for large n we see that Δ → 0 if the eigenvalues of the matrix M − K

lie within the unit circle, regardless of where the eigenvalues of M may sit.
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So, even if the dynamics w(n) → M ·w(n) is unstable one may construct an

observer to estimate the unobserved states.

In the case the dynamics is nonlinear, and the analog of the matrix M is time

dependent, a similar construction can be used to cure the instabilities on the

submanifold of the data generation plus model space where w(n) ≈ x(n),

the synchronization’ manifold.

In the language of the path integral this takes two forms. In the case of doing

a saddle path integral the ability to find a path S

∂A0(X|Y)

∂X
|X=S = 0, (E-46)

subject to the dynamics, deterministic probably, reflects the instability on

the synchronization manifold. It does this by expressing a large number

of local minima connected with the incoherence of the data signal yl(tn)

and the model representation of this hl(x(tn)) when both are chaotic but

not synchronized. The role of the analog of the matrix K, the observer, is

to synchronize the data and the model output. This eliminates the local

instabilities.

In this context, then, the minimum number of required measurements to

allow the estimation of the parameters and unobserved states is the number

of independent instabilities on the synchronization manifold. This is cast into

a statement about the indices of such instabilities, the conditional Lyapunov

exponents (CLEs). So, given a model, and given data either generated by

the model or by a data source, evaluae the CLEs of the model given the data,

and determine how many independent data time series are required to force

all CLEs to be negative. That determines L.

There is another way, which is not as precise, but probably equivalent. In

doing the path integral, say by Monte Carlo methods, one will be successful if

there are a few, even better only one, paths that dominate the contributions

to the integral. In the classical case here, this has to do with minima of

the action A0(X|Y)–so not unrelated to the saddle path approximation. If
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one has data that visits the minima of the action, the main contributions to

the integral will be picked out, and with luck other paths will contribute an

exponentially small quantity to the integral.

In any case, the quantity exp[−A0(X|Y)] is the density of paths in the path

space of the X–(m + 1)D dimensional space. The same density of paths is

generated by solutions to the Langévin equation expressed in (fake) ‘time’ s:

dX(s)

ds
= −

1

2

∂A0(X(s)|Y)

∂X(s)
+ η(s), (E-47)

where η(s) is Gaussian white noise of zero mean and variance unity.

So one way to explore the structure of the dependence of A0(X|Y) in X

space is to solve the Langévin equation for a collection of initial conditions

Yj(s = 0; j = 1, 2, ..., and see how many different values of A0(X(s → ∞|Y)

are observed. In practice, one simply takes s large, not ∞, of course, and

looks at the values of the action that arise. In simple examples one does

this for zero measurements, one measurement, two measurements, .... For

zero measurements, one typically finds, for nonlinear dynamics of the model,

many minima of the action, corresponding to the many local minima in the

saddle path method. As one adds measurements, the number of minima

decreases and then settles into one or a few at just about the same value of

L as the CLE estimation above would indicate.

The upshot of all this is that given a model, reflecting the resolution one

wishes to accomplish in space and time, one can use this feature to estimate

how many measurements at any given time one should make. If one has

this minimum number of measurements at each observation time, then by

evaluating the expected path and the RMS variation about that path over

the whole observation window, one can now estimate the accuracy with which

the desired measurement x(tm = T ) can be evaluated. This accuracy should

certainly decrease as one takes away measurements at each time within the

observation window, and this may indicate, given a desired level of accuracy,

how many measurements fewer than the ‘required’ number will be acceptable.
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Finally, and this is another question, one may ask how often measurements

need to be made within the observation window. So assuming one makes

the required L measurements at each time a set of observations are made,

what happend if the time between measurements is increased? The rule

of thumb here comes from noting that between measurements one moves

the model system forward using the model dynamics. The predictability

of those dynamics is associated with the Lyapnov exponents of the model

system wherein errors in the knowledge of a state at time tn Δx(n) grows ex-

ponentially rapidly: Δx(tk ≥ tn) ≈ Δx(tn) exp[λ(tk − tn)]. If measurements

are made with time intervals between measurements longer than 1/λ, then

the errors in knowledge of the system state are likely to be too big to recover

with another measurement. Stated otherwise, the coherence of the state after

a few times 1/λ with the earlier state is so low that measurements made so

infrequently are unlikely to be able to efficiently or accurately redirect the

state to the correct region of phase space from where accurate predictions

may be accomplished.

E.5 Other Approaches to Data Assimilation

Assimilating information from data into models and estimates of states and

parameters has many approaches which can be formulated as ways to ap-

proximate the path integral.

• 4DVar

The saddle path approximation to the path integral requires a search

for a path or paths S satisfying

∂A0(X|Y)

∂X
|X=S = 0, (E-48)

and this is often seen as a maximum likelihood estimation. This method

is used in the incorporation of observations by the European Center

for Medium Range Weather Forecasts as well as in modeling of Co2

transport [10]. The outcome from this kind of calculation is a path S
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through the assimilation or observation window, and the state at the

end of the window s(T ) ≈ x(T ) and the estimates of fixed parameters

using the information transferred in the window are to be used as inputs

to the underlying model for predicting for t > T . This approach does

not give a method for estimating the RMS error or other moments about

the ‘optimal’ path S.

The path integral, as noted, does that by drawing attention to the

Gaussian integral about the path S.

• Shadowing Paths

This is a method [11] that focuses on the satisfaction of the model dy-

namical equations x(n + 1) = f(x(n),p)). It minimizes 1
2

∑m−1
n=0 (x(n +

1)− f (x(n),p)−ξ(n))2 starting with observations for X across the mea-

surement window {t0, t1, ..., tm} and ξ = 0. Moves to minimize this are

done with prescribed shifts in X and ξ. This is equivalent to minimiz-

ing the path integral emphasizing the dynamics term starting with full

satisfaction of the measurement error term, resulting in a single ‘opti-

mal’ path. As in the evaluation of the path integral, all the information

within the measurement window is used. However, all state variables

must be measured, and there is no estimate of the corrections to the

‘optimal’ path that results. It is not an ‘ensemble’ method. Again those

restrictions are lifted when the full path integral is used.

• Ensemble Filters

This is a method very close to the ideas in the path integral approach.

Here one tries to satisfy the two step process described earlier by using

the dynamical equations to carry out the x(n) → x(n + 1) step, then

using an assumption about the distribution of state variables after the

operation of the dynamics, information from the measurements is incor-

porated into knowledge of the probability distribution at the next time

step.

In particular, for what is called the Ensemble Kalman Filter [12] or its

local (in space) version [13], one assumes that at each time in the mea-

surement window the distribution of states P (x(n − 1)), conditioned
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on earlier measurements is Gaussian. At tn, before the dynamics acts,

one uses what knowledge there is of P (x(n − 1) and from that eval-

uates a mean and a covariance matrix. Points are moved one step in

time by the nonlinear dynamics of the model, and the new distribution,

not Gaussian at all, is approximated by a new Gaussian P (x(n)). The

mean and covariance of the new Gaussian is adjusted using the rules

of a Kalman filter, appropriate to a linear optimization problem, to the

next state, where the adjusted, still Gaussian, distribution is operated

on by the nonlinear dynamics, giving a distribution which is approxi-

mated by a Gaussian, etc. In the local ensemble Kalman filter strategy,

the distribution after the action of the nonlinear model dynamics, one

uses a collection of local Gaussians in the spirit of Anderson and the

spirit of local radial basis functions used as a collective sum of Gaus-

sians to approximate the actual, non-Gaussian, distribution. When the

information from the measurements is transmitted to the model and the

state variable distribution is approximated by a set of local (in space)

Gaussians, one is no longer doing a linear approximation anywhere but

a sequence of piece-wise linear (in space) approximations, and this can

do a very credible job of approximating quite complex distributions

P (x(n)) even in high dimensions. This, presumably, underlies the suc-

cess of the local ensemble filter.

Because this is an ensemble filter, one has information both about an

‘optimal’ path through the assimilation window as well as nearby paths,

so sample covariance matrices and higher moments about the mean can

be evaluated.

This local ensemble Kalman filter is what has been used by Fung, Kalnay

and collaborators in combining the transport equation for CO2 concen-

tration with meterological models to determine the wind field appearing

in the transport equation.
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E.6 Relation to the Carbon Problem

Deterministic Wind

Following Bocquet [1] we are interested in reconstructing the source term

s(r, t) for the production and transport of a tracer whose concentration c(r, t)

is governed by the linear equation

∂c(r, t)

∂t
+ u(r, t) · ∇rc(r, t)−∇r · (K∇rc(r, t)) = s(r, t), (E-49)

and L observations are made

yl =

∫
d3rdtπl(r, t)c(r, t), (E-50)

where the πl(r, t) are a normalized weighting factors for the importance of

measurements at time t, in the interval [t0, T ] over some region in r = (x, y, z)

space.

The question is how to estimate s(r, t) from these dynamics and these mea-

surements. First we will assume that the relation between the L measure-

ments yl and the concentrations c(r, t) comes from the projection function of

Bocquet [1] measurements sampling the concentration at L spatial locations

at m + 1 times {t0, t1, ..., tm} then

Hlac(ra, tn) = Hlaca(n), (E-51)

where the L×D measurement matrix is a summary of Bocquet’s projection

operator p(r, t). The linear PDE for the concentration c(r, t) is discretized

in space at D grid points and turned into a map from time tn to time tn+1

of the form

ca(n + 1) − ca(n)

τ
+

3∑
k=1

uk(ra, n)[c(ra+1, n) − c(ra, n)]

− K[c(ra+1, n) − 2c(ra, n) + c(ra−1, n)] − sa(n) = 0;

or

ca(n + 1) =

D∑
b=1

Mab(n)cb(n) + sa(n). (E-52)
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To do the path integral we must make some assumptions on the way noise

enters the measurements and errors spoil the infinite resolution of the model

dynamics. We assume that the noise is Gaussian at each measurement time

and independent at each measurement time. The conditional mutual infor-

mation term then becomes

Rm

2

m∑
n=0

L∑
l=1

(yl(n) −
D∑

a=1

Hlaca(n))2, (E-53)

and 1
Rm

is proportional to the variance of the measurement noise, taken to

be the same for each measurement.

If we broaden the deterministic, discrete in time and space, version of the

dynamics by an assumption about the reduced resolution of the model or

fluctuations in the source term, we can take

P (c(n + 1)|c(n)) = δD(c(n + 1) − Mc(n) − s(n)) (E-54)

into

P (c(n + 1)|c(n)) = exp[−
m−1∑
n=0

(c(n + 1) − Mc(n) − s(n))2/2σ2
f ], (E-55)

where σf is the standard deviation of the error or fluctuations in the model.

We might, as below, attribute these to fluctuations in the source; we might

not.

With these assumptions, we may write the ‘action’ A0(C|Y), where C =

{c(m), c(m − 1), ..., c(0)}, as

A0(C|Y) =
Rm

2

m∑
n=0

L∑
l=1

(yl(n) −
D∑

a=1

Hlaca(n))2

+
Rf

2

m−1∑
n=0

(c(n + 1) − Mc(n) − s(n))2, (E-56)

Using this action we can calculate the moment generating function χ(K); K =

{ka(m), ka(m− 1), ..., ka(0)}

exp[χ(K)] =

∫
dC exp[−A0(C|Y) + K · C], (E-57)
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by noting that A0(C|Y) = 1
2
CTQ(M, Rm, Rf ,Y,H)C − W(M, Rm, Rf , s) ·

C + terms independent of C, we can perform the Gaussian integral over C

to find

χ(K) =
1

2
W · Q−1W + W · Q−1K +

1

2
K ·Q−1K −

1

2
trace log[

Q

2π
]. (E-58)

This ignores some constants independent of K. The dependence on the

source sa(n) is in the vector W only. There is a quadratic term in sa(n) but

it cancels out in determining the expectation value of ca(n). The matrix M

is linear in the wind field ua(n), and u(n) appears both in the vector W and

in the matrix Q.

The conditional expectation value, conditioned on the measurements, of the

concentration at space location ra and time tn, namely < ca(n) > is

< ca(n) >=
∂χ(K)

∂ka(n)
|K=0

= Q−1 · W, (E-59)

and the covariance about the mean is

< ca(n)cb(n
′) > − < ca(n) >< cb(n

′) >=
∂2χ(K)

∂ka(n) ∂kb(n′)
|K=0

= Q−1.

(E-60)

The expected value of the concentration is linear in the source, as expected

from a linear problem, while the mean source value does not enter the co-

variance about the mean. It is in the vector W only.

However, if we attribute all fluctuations in the transport dynamics–we called

them ‘model errors’ before–to fluctuations in the source term, so Δs ∝ σf ,

then if we were to track the mean concentration in space (index a) and time,

we could estimate the source term, and by tracking the covariance about that

mean, we could estimate σf as well.

In this formulation of the problem, where we assume Gaussian noise in the

measurements and Gaussian errors in the model totally attributed to source

fluctuations, we can directly estimate both source strength and fluctuations

from the concentration measurements. The relation between the actual mea-

surements yl(n) and the concentrations requires inversion of the rectangular
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L × D matrix Hla, and in this Gaussian context the inverse is naturally the

pseudo-inverse [HT · H]−1H.

If we relax the assumptions about the distribution of noise n the mea-

surements or the source of nondeterminism in the dynamics c(n + 1) =

Mc(n) + s(n), then we cannot do the integrals exactly, and we must per-

form the integrals, even in the linear dynamics case using some tool such as

a Monte Carlo calculation.

Stochastic Wind

In a full nonlinear problem we would estimate the parameters such as K,

the source locations as a function of time sa(n) and the wind ua(n), and

this involves the full nonlinear problem. Here, if the wind is given to us as a

mean wind u
(0)
a (n) plus an error estimate in the form of a covariance matrix

Ran,bn′ =< (ua(n) − u
(0)
a (n))(ub(n

′) − u
(0)
b (n′) >, we can find the effect of

error in the wind on the estimation of the expected concentration < ca(n) >

and the covariance about the mean < ca(n)cb(n
′) > − < ca(n) >< cb(n

′) >

by computing the averages

∫ m∏
n=0

d3Du(n)Q−1·W exp 1/2[(ua(n)−u(0)
a (n))R−1

an,bn′(ub(n
′)−u

(0)
b (n′))]

1

det[2πR]

and
∫ m∏

n=0

d3Du(n)Q−1 exp 1/2[(ua(n)−u(0)
a (n))R−1

an,bn′(ub(n
′)−u

(0)
b (n′))]

1

det[2πR]
,

we will have an expression for the expected source from the first and the

covariance of the concentration estimations from the second, averaged over

the distribution of the wind.

A Tiny Example

To see how this works out in a tiny example, we select D = 1, namely

concetration at one spatial point c(n), L = 1, one measurement, m = 1, so

two measurement times. The ‘path’ is comprised of the (m +1)D = 2 vector

{c(0), c(1)}. We select the measurement function to have H = 1. The action
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for the apth integral is

A0(C|Y ) =
Rm

2
((y(0)−c(0))2+(y(1)−c(1))2)+

Rf

2
[c(1)−(M1+M2u)c(0)−s(0)]2,

(E-61)

where we made the ‘wind’ a scalar and recalled the linear dynamics from the

transport equation is linear in the wind. Note the coefficient of u, is related

to the gradient of the concentration.

The generating function for the mean < c(0) > and < c(1) > and the other

moments is given by

χ(k0, k1) = log

[∫
dc(0)dc(1) exp[−A0(C|Y )]P (c(0))] exp[k0c(0) + k1c(1)]

]
,

(E-62)

where P (c(0)) is the distribution of concentration at the initial time. We will

take this to be unity here, though if it is a Gaussian log[P (c(0))] ∝ −(c(0)−c0)
2

2σ2
c

,

that poses no special problem here.

The strategy is to integrate over C = {c(0), c(1)}, holding the ‘wind’ u fixed,

then integrate over the distribution of the wind. In itself that might come

from the underlying turbulent fluid dynamics, but we do not address that

too.

In our earlier notation, the integral to be done is∫
d2C exp[−1/2C · Q · C + W · Q + K · C], (E-63)

where K = {k0, k1}, W is the two component vector W = {−Rmy(0) +

Rfs(0)[M1 + M2u],−Rmy(1) − Rfs(0)}, and Q is the 2 × 2 matrix

Q =

(
Rf (M1 + M2u)2 + Rm −Rf(M1 + M2u)

−Rf (M1 + M2u) Rf + Rm

)
, (E-64)

and

Q−1 =
1

RmRf (M1 + uM2)2 + R2
m + RmRf

(
Rf + Rm Rf (M1 + M2u)

Rf (M1 + M2u) Rf (M1 + M2u)2 + Rm

)

(E-65)

The evaluation of the expextation values of Q−1 and Q−1 · W using the

Gaussian distribution for P (u) would result in a set of equations for the
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source terms, here s(0), but these do not appear to be tractable analytically,

so we suggest thinking about an expansion in M2 which is proportional to the

gradient of the concentration field, and this may be small. This expansion,

about the mean u0 will allow as estimate of the uncertainty in the source

values inheritied from uncertainty in the observations, the model, and the

wind field transporting the tracer.

Relation to Bocquet, 2005

In Bocquet’s paper [1] he solves for the source sa(n) concentration relation

using a variational principle quite separate from the expression given by

Equation (E-56). He assumes a minimization of the entropy, thus emphasiz-

ing one’s ignorance at the outset of the estimation, and seeking to improve

one’s knowledge through the assimilation of data. This method does not re-

quire any additional assumptions beyond saying something about the errors

in the measurements–Gaussian here, but not necessarily for Bocquet, and

the errors in the model. Bocquet assumes the model has no errors and that

the concentration c(r, t) can be evaluated from the transport equations in

terms of the sources s(r, t) via

c(r, t) =

∫
d3r′G(r, t; r′, 0)s(r′, 0). (E-66)

He then compares the measurements yl(t) with a measurement function ap-

plied to c(r, t) calculated in terms of the sources using this Green function.

Instead, however, of minimizing the least squares quantity

∫ T

0

dt(yl(t)− Hc(r, t))2, (E-67)

he selects another principle, whose Physics is not described, which relates a

distribution in s(r, t) to an a priori distribution of sources via a minimum

entropy principle.
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E.7 Summary and Status

This appendix has summarized a number of approaches to the use of ob-

served data in estimating the concentration of trace gases, especially CO2,

in the atmosphere/ocean system. The transport equation at the opening of

this appendix is somewhat deceptive as estimates easily show: the molecular

viscosity, diffusion transport coefficient, is so small, it is irrelevant. The real

transport, in addition to advection by the wind, is from fluctuations in the

wind u(x, t). Estimating this well is at the heart of the transport of a passive

tracer such as the gases we address in this report. (When the gases are reac-

tive, everything is changed.) The general methods for data assimilation as a

statistical physics problem are under development in the study of problems

including the CO2 problem addressed in this report. Over several decades

the focus in numerical models of complex phenomena has been on increas-

ing spatial and temporal resolution and adding representations of detailed

physical processes. The importance of using data from observations of parts

of these complex systems has been of some importance for a shorter period,

and computational power may not yet be enough to do the tasks required

to perform the tasks of model completion: estimate states and parameters

from sparse data or testing: identify models inconsistent with the data. We

do not expand on this effort here. Instead we make some observations within

the challenges of estimating fluxes of transported tracer gases. The methods

surveyed here fall into two broad categories:

1. The wind is given by another calculation. Typically the wind field,

resolved to some spatial level, is presented as an externally derived

data set. If it does not have both the mean wind and the fluctuations

about the mean, it is not sufficient to provide accurate tracer transport

for the reason just noted. If it does, then the ability to identify gas

concentrations is likely to be washed out by the diffusion induced by

wind fluctuations, but fluxes of CO2 or other gases are more likely to

be accurate. In any case, coupling one model calculation for the wind
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field with another for the transport of CO2 may be acceptable, but has

the flaw of putting together two different estimation procedures with no

sense of correlation between the two sets of observations or dynamical

variables. Ray Weiss (SIO) reported to JASON about estimates of very,

very dilute concentrations of tracer gases where the fluctuation against

a zero background were reliably estimated. In this situation, perhaps

putting together two different calculations might be valuable.

2. A joint model of the atmosphere/ocean coupled to the transport of CO2

is solved along with the incorporation of information from observations

of all dynamical variables: wind, surface pressure, temperature, as

well as CO2 concentrations, directly or through measurement functions

(called h(x) in the text). This coupling of the weather model plus the

transport model requires consistency of the two, and provides a firmer

basis for the estimation of CO2 fluxes. In this regard the work of Fung

and Kalnay and associates [15, 16] is very promising, and, while harder

computationally, appears to be the right direction.

As discussed in Section 5 we learned about several controlled releases in the

EU where using the first method there were striking successes and failures.

The data assimilation method of Bouquet was used in these calculations.

We did not hear in person about the work at the European Centre for

Medium-Range Weather Forecasts (ECMWF) in their GEMS program, but a

review talk by Richard Egelen was available to us (Monitoring of Atmospheric

CO2 and CH4, 2007). It uses the 4DVar variational principle described in

the text (saddle path method). The work of Fung, Kalnay, Kang, Liu, and

collaborators (c.f. [15, 16]) is more ambitious as it uses an ensemble data

assimilation scheme for the coupled transport and weather model problem.

In the latter case estimates of the mean (4DVar estimates the mode) and

RMS errors about that mean are the goal.

The estimation of the horizontal wind and vertical transport processes, es-

pecially, and that along with the other dynamical variables of weather is the
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best way to provide a consistent picture of CO2 or other fluxes. We encour-

age NNSA and DOE to support the ensemble methods for data assimilation.

They will prove useful in the CO2 problem as well as in many other problems

of interest to DOE: transport in nuclear power plants, dynamics of genetic

networks, stability of power grids, where noisy data and model errors cer-

tainly play roles in estimating conditional probabilities of interesting events.
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F APPENDIX: Use of Tracers for Empiri-

cally Testing Models

Uncertainty in the regional estimates for GHG emissions include measure-

ment errors of green house gas concentrations as well as the uncertainties

due to the weather and transport models that are used to convert measured

concentrations into emission estimates. In some cases there is an additional

uncertainty due to “prior” assumptions about the distribution of sources of

emission in space and time. In many circumstances the measurement errors,

model uncertainties, and prior assumptions are coupled in the analysis. Con-

sequently an “ensemble” analysis [1] is often used in which model parameters

and assumptions about emission sources are varied according to some prob-

ability distribution function (PDF) to provide an indication of the spread of

predicted concentrations.

For monitoring of emissions in the context of GHG agreements and treaties,

it is important to obtain a high level of confidence in the uncertainty quantifi-

cation for emission estimates. In particular, since treaty monitoring requires

attribution of emissions to a country or region, it is very useful to validate

estimates of uncertainties in weather and transport models independently of

prior assumptions about distributions of emission sources.

One approach to quantification of uncertainty in weather and transport mod-

els is to use controlled release of tracer gas to provide an emission source

which is well-defined in space and time. If the measurements of concentra-

tion of the tracer gas at distant locations are sufficiently accurate, weather

and transport uncertainties are empirically determined independent of prior

assumptions about the source distribution. Such experiments have been car-

ried out in the 1990s [2, 4].

191



F.1 Release of Atmospheric Tracer Gases

Well known atmospheric tracer gases include SF6, perflourocarbon (PFC)

compounds (c.f. [2]), and chloroflourocarbons (CFCs). We will not attempt

a detailed tradeoff between the various tracer gases here, rather we discuss

the feasibility and utility of using one particular approach, perflourocarbon

tracers (PFTs).

PFTs are inert, non-toxic, highly stable compounds consisting of 4-6 atom

carbon rings [2]. They do not deplete stratospheric ozone. Examples of

perflourocarbon compounds, typical background concentrations, and total

atmospheric burden are given in Table 6.

Table 6: Characteristics of PFTs and Release Experiments
PDCB PMCH oPDCH

Name (perflouro-) dimethylcyclobutane methylcyclohexane 1,2-dimethylcyclohexane
Chemistry C6F12 C7F14 C8F16

Background level (ppqv) 3 ± 1 8± 1 1 ± 1
Atmospheric burden 140 metric ton 500 metric ton 71 metric ton
Release experiment (name) BRAVO ANATEX+ETEX+others ANATEX+others
Amount released (kg) 1600 800 (ANATEX) 3300

Note that the amounts released in a single release experiment can sometimes

be a few percent of the total atmospheric burden. Because the lifetime of

these gases in the atmosphere is long (> 3000 yr), prudence must be exercised

in the release of these gases. However, although the per molecule potency

is large (∼ 1 W m−2 ppb−1), their low concentration in the atmosphere

implies that the radiative forcing will be five orders of magnitude less than

that of CO2 (1.7 W m−2). Consequently, the main concern for individual

experiments is not GHG radiative forcing, but rather increase in the ambient

global background levels. In this regard, we note recent reports that China

has become a major emitter of PFCs [5] with emissions of order hundreds

of tons per year for some PFC species. However, emissions have not been

reported for some of the specific PFT gases mentioned above as possible

tracer gases.

What level of downstream enhancement might be achieved in a controlled
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release experiment? Consider instantaneous release of 100 kg of a PFT. The

concentration in the plume at a point downwind is, in normalized units:

CPFT = 3 × 10−14 ×
(

Mrelease

100 kg

)(
MWPFT

400 g/Mole

)−1 (
Area

105 km2

)−1

×
(

hmix

1.5 km

)−1
(

Mfair

45 Mole/m3

)−1

i.e. about 10 times the ambient background concentration and over 30

times the typical error for concentration measurements of PFTs (10−15 or

1 ppqv). Careful measurements may do an order of magnitude better, im-

plying percent-level accuracy in measurement of concentrations in the down-

wind plume. These estimates are meant to be order-of-magnitude estimates

of feasibility, not a detailed calculation of an actual release experiment.

F.2 Continental-Scale Release Experiments in the Past

Several experiments of controlled release of tracer gases have been carried

out in the past on continental scales. These include the Across North Amer-

ica Tracer Experiment (ANATEX) [6] and the European Tracer Experiment

(ETEX)[3]. See Table 7.

Table 7: Release Experiments
Name Year Location Number PFT Species Total Sampling

(tonne)

ANATEX 1987 North America 30 PMCH,oPDCH 7.4 77 surface, 5 tower
PTCH aircraft

ETEX 1994 Europe 2 PMCH,PMCP 0.83 168 surface

The ANATEX experiment was carried out in 1987 and consisted of 30 indi-

vidual releases of PFTs from two sites. Samples were taken at approximately

77 surface-level sites and 5 towers, as well as aircraft measurements. Figure

48 shows a simulation of the release plume for one of the ANATEX experi-

ments.

The ETEX experiment was performed in 1994 and consisted of two releases

from western France of two PFTs. The release was sampled by 168 stations.
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Figure 49 shows a simulation of the release plume for the ETEX experiment.

Results of analysis of the ETEX experiments are discussed in the main body

of this report and also in [7]. These results indicate the importance of con-

trolled release experiments for quantitative assessment of modeling errors.

Figure 48: Simulation of the plume 5 days after an ANNATEX release. Aster-
isk marks the release point. (http://zardoz.nilu.no/ andreas/flexpart.html)

F.3 Recommended capabilities for tracer gas release

Given the importance of atmospheric transport in deriving GHG emissions

from GHG concentration measurements, it is surprising that major experi-

ments with controlled release of tracers have not occurred since the 1990s. We

recommend that DOE develop the capability to carry out “challenge” cam-

paigns in which a controlled release of a tracer gas is followed by extensive

surface and air sampling to measure tracer gas concentrations. Weather-

transport and inversion codes would then be challenged to analyze the mea-

surements. Much of the required capability already exists within the DOE

to execute such a challenge campaign. Additional capability exists within
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Figure 49: Simulation of the plume 89 hours after an ETEX release. Aster-
isk marks the release point. Colors indicate plume particle height (meter).
(http://zardoz.nilu.no/ andreas/flexpart.html)

NOAO and significant expertise also resides in Europe.

Appendix F – References

[1] Kang, J., “Carbon cycle data assimilation using a coupled atmosphere-

vegetation and the Local Ensemble Transform Kalman Filter”, disser-

tation, Univ. of Maryland (2009).

[2] Watson et al., “The Atmospheric Background of Perflourocarbon Com-

pounds Used as Tracers”, Env. Sci. and Tech., 41, 6909 (2007)

[3] Nodop, K. et al., “The Field Campaigns of the European Trace Exper-

iment (ETEX): Overview and Results”, Atmospheric Environment, 32,

4905-4108 (1998).

[4] Stohl, A., “Computation, Accuracy and Applications of Trajectories –

A Review and Bibliography”, Atmospheric Environment, 32, 947-966

(1998).

195



[5] Saito, T. et al., “Large Emissions of Perfluorocarbons in East Asia

Deduced from Continuous Atmospheric Measurements”, Environ. Sci.

Technol., 44, 4089-4095 (2010).

[6] R.R. Draxler, R. Dietz, R.J. Lagomarsino and G. Start, “Across North

America tracer experiment (ANATEX): Sampling and analysis”, Atmo-

spheric Environment. Part A., Volume 25, Issue 12, Pages 2815-2836

(1991).

[7] M. Krysta1, M. Bocquet, and J. Brandt, “Probing ETEX-II data set

with inverse modeling”, Atmos. Chem. Phys. 8, 3963-71 (2008).

196



G APPENDIX: Selected Acronyms

ABET Accreditation Board for Engineering and Technology
AIRCOA Autonomous Inexpensive Robust CO2 Analyzer
AIRS Atmospheric Infrared Sounder
AMS Accelerator Mass Spectrometer
AMU Atomic Mass Unit
ANATEX Across North America Tracer Experiment
ARGO Array for Real-time Geostrophic Oceanography
ASCENDS Active Sensing of CO2 Emissions over Nights, Days, and Seasons
ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer
CCS Carbon Capture and Storage
CONUS Continental United States
CTBT Comprehensive nuclear-Test-Ban Treaty
CFC Chlorofluorocarbon
CIA Central Intelligence Agency
CRDS Cavity Ring-Down Spectroscopy
DOE Department of Energy
ECMWF European Centre for Medium-Range Weather Forecasts
EDGAR Emissions Database for Global Atmospheric Research
EIA Energy Information Administration
ETEX European Tracer Experiment
EU European Union
FFDAS Fossil Fuel Data Assimilation System
FTS Fourier Transform Spectroscopy
GCM Global Climate Model
GEO Geosynchronous Orbit
GHG Greenhouse Gas
GOSAT Greenhouse gas Observing SATellite
GPS Global Positioning System
GSD Ground Sampling Distance
HCF Hydrofluorocarbon
HCFC Hydrochlorofluorocarbon
HVAC Heating, Ventilating, and Air Conditioning
IGCC Integrated Gasification Combined Cycle
IPCC Intergovernmental Panel on Climate Change
IR Infrared
LED Light Emitting Diode
LEO Low Earth Orbit
LIDAR Light Detection and Ranging
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LLNL Lawrence Livermore National Laboratory
MEA Methyl-Ethanol-Amine
MODIS Moderate Resolution Imaging Spectroradiometer
NAMA Nationally Appropriate Mitigation Action
NCAR National Center for Atmospheric Research
NDIR Non-Dispersive Infrared
NDVI Normalized Difference Vegetation Index
NOAA National Oceanic and Atmospheric Administration
NTM National Technical Means
OCO Orbiting Carbon Observatory
PFC Perfluorocarbon
PFT Perfluorocarbon tracer
ppb parts per billion
ppm parts per million
RACCOON Regional Atmospheric Continuous CO2 Network
SCIAMACHY SCanning Imaging Absorption SpectroMeter for Atmospheric

CartograpHY
STP Standard Temperature and Pressure
SWIR Short-wave Infrared
TIR Thermal Infrared
TOPEX Topography Experiment
UNFCCC United Nations Framework Convention on Climate Change
V-PDB Vienna Pee-Dee Belemnite
V-SMOW Vienna Standard Mean Ocean Water
VNIR Visible Near Infrared
WMO World Meteorological Organization
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