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INTRODUCTION 

Passive acoustics are used to detect, classify, and local-

ize signal sources. Present practice is based primarily on spectral 

and cross-spectral analysis in which phase relations between signal 

components of differing frequency is not exploited. Bispectral 

analysis is an important extension of power spectral analysis which 

makes use of inter-frequency phase information. MacDonald has been 

promoting the application of bispectra in various problems (see JSR-

82-601, Speech Research, by Despain, MacDonald, and Rothaus). This 

collection introduces the bispectrua, and other polyspectra, and 

summarizes three preliminary studies exploring application to 

passive acoustic ASW. 

The first section is a primer by G. MacDonald on bispectra 

and higher order spectral constructs. In this section, the auto-

bispectrum and cross-bispectrum are introduced and related to third 

order time-lagged mean products of the time series and to higher 

" 
order transfer functions connecting the process under examination to 

a serially independent generating function. Also discussed is use 

of bispectra in detecting and describing nonlinearity in the process 

generating the time series. 

1 ,. ~ ...... 
. :\:-:::-. 
.. ~ .. -.......... -.. 
. .... .... -... . 
' .... '" .... . 
.. . "' ...... " . 
.,;... : . : -' 



~JI'~.,..~lC"'[-~~~ • .,.._T'\I' •• f .. J"".iII'7-.::f 02!'4Jt .i v_f-.'-;'''1I l'Q~RIIIt. U ?t,'1i',! :tPRi'_lB.W' .. r .... NtJ1if1, we .. ~ ..... tw\.,...c .F.N'..,....,r!1li ........... .,.. 

j .. 

'. 

'. 

~ :~ 

• ~ .... 
~.: 
~-J 

~:-: 
~ 

~ 
,4,.r. · . , . · . ' .. 
'./ ,.\ , . 
~ .. 

In the second section, R. Davis addresses the detectability 

of a signal through its spectrum and its bispectrum. Surprisingly, 

no processing gain derives from bispectral analysis even though it 

makes use of waveform (inter-frequency phase relation) inforaa-

tion. Reliable detection requires more signal energy for bispectral 

detection than for spectral detection unless the signal skewness is 

large compared with unity. The amount of averaging applied to 

reduce random sampling variations is proportional to the tiae-

bandwidth product Hi as H increases, the disadvantage of bispectral 

analysis increases. 

In the third section H. Abarbanel describes some experi-

ments in which numerically generated signals, rich in harmonic 

content, were subjected to power-spectral and bispectral analysis. 

These show that the signal bispectrua contains more structure than 

the power spectrum, indicating that bispectral analysis of signals 

may provide very useful additional classification beyond that 

obtained from energy methods. Consonant with the results of 

Section 2, it is found that background noise obscures the signal 

bispectrum and that the energy signal-to-noise ratio required for 

useful signal identification is comparable for spectral and 

bispectral analysis. 
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In the fourth section W. Hunk outlines an application in 

which the inter-frequency phase information in a class of signals 

one might expect to be produced by submarines can be used to obtain 

localization information. In addition to presenting this pot en-

tially practical application, this section provides insight into the 

origin and description of inter-frequency phase relations using 

bispectra and related analytic tools. 

To summarize our preliminary conclusions: 

(1) It is possible that inter-frequency phase can be used 

to describe aspects of source-receiver geometry, and 

this may have real utility in short range target 

trailing. 

(2) The bispectrum magnitude and phase contains informa-

tion about the signal not available in the power 

spectrum. This could provide useful classification 

signatures if source waveform is not strongly 

dependent on geometry and operating conditions. 

(3) Bispectra do not appear to offer any advantage in 

detectability at low signal-to-noise ratio unless the 

signal skewness is large. 
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From a broader perspective, bispectral analysis is just one 

analytic tool which describes inter-frequency phase relations or 

waveform. These should, in general, provide additional signal 

description and some discrimination of signal and noise. To assess 

this possibility, it is necessary to understand what waveform 

signatures exist in real signals, how well these survive propaga-

tion, and how they may best be analyzed. Toward this end we 

reco1DJDend: 

(1) Submarine and surface ship signals should be analyzed 

for bispectral, and other waveform-descriptive, 

signatures. Sonobouy records obtained at high signal-

to-noise ratio would be best for this purpose. 

(2) Analysis of inter-frequency phase distortion during 

propagation should be explored analytically to pTovide 

order-of-magnitude estimates. 

Beyond passive acoustics, we hypothesize that bispectral 

analysis, or some other analysis tool based on inter-frequency phase 

relations may be useful in active acoustics in the presence of 

reverberation. Assuming that the target Is relatively localized 

compared with the reflectors producing reverberation, it is likely 

that phase information may help discriminate target and clutter. 

4 

, 

['-'~' 
. ... -;.'" :'-- -

t 

..... 

\:::>::~::~: 
\ . ~' .. ".,\ .. .. 
", .... , ... .. .... ' .. 
\ ~ .. " ... 'II: ". "'\ 

t:~·:.~··· 
I 



Some analysis is needed to quantify the gain which might be 

achieved. 

..... '.'O .. , • ~ • . -.... ... .. .. . . .... .. . . .. ..... , ... ... ~)." .. ............ '\ 
-.- ..... - ... ~ .. ... . 
,,\'.-. ",-." " 

~:::' .... 

'-

5 

\ 
" " 

( . 



1.0 A PRIMER ON HIGHER-ORDER OR POLYSPECTRA 

Analysis of time series is the central problem of data 

analysis in a wide variety of defense- and intelligence-related 

applications. Development of the theory of time series analysis has 

followed two paths, communications engineering and mathematical 

statistics. The engineering community has emphasized the frequency 

or spectral approach, while the statisticians have found comfort in 

the time domain. Both groups have based their work on stationary 

linear models. These models have had great success in a wide 

variety of unrelated fields, and quite naturally there has been 

little effort to explore non-linear, non-stationary models. The 

very great achievements and the refined methods used in stationary 

linear models suggest that it is unlikely that further progress in 

time series analysis is likely by pursuing concepts in areas such as 

linear predictive coding. Further, simple observations of the world 

around us show that actual phenomena are non-linear and non-

stationary. Progress in data processing is likely to be in the 

direction of models which incorporate non-stationarity and non-

linearity. This primer is concerned only with non-linearity. Non-

stationarity will be dealt with in a separate paper. 
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1.1 Linear and Non-Linear Models 

Any discrete stationary process xt with a spectral density 

can be represented as a linear combination of an uncorrelated 

stationary process £t in the form 

GO 

x -t n-- h 
n 

e: t-n (1.1) 

Equation (1.1) provides a general representation of a linear process 

and can easily be transformed into the familiar ARMA (autoregressive 

moving average model) if the function 

GO 

g(z) - h 
n 

n 
z (1.2) 

can be approximated by a rational function a(z)/a(z). Provided 

that (1.2) holds, and assuming a(z) has constant term one, then 

in which 

where 2 
£ 

(1.3) 

is an uncorrelated process 

(1.4) 

is the expected value ot 
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This representation does not distinguish between uncorrelated and 

independent variables; a linear model is one in which 

(1.5) 

where et are independent variables. Of interest is that £t' an 

uncorrelated process, and e t , an independent process, have the same 

second-order structure. Both have white spectra but may differ in 

other ways, as will be noted below. If £t is a Gaussian process, 

it is both uncorrelated and independent, and the distinction between 

£t and et vanishes; xt is then also a Gaussian process. 

In order to illustrate the difference between et and £ 
t 

in general, we consider the prediction problem. If the sequence e t 

is strictly independent, then the past contains no information about 

the future, and the best predictor of et is its mean. This is also 

true for an uncorrelated process et provided the predictors are 

linear. However, the past may contain information about the future, 

which will be revealed if the predictors are non-linear functions of 

the observed values, even though the values of Et are 

uncorrelated. For example, consider a process nt defined by 
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where, as usual, et represents a serially independent process with 

zero .ean and constant variance, 0
2

• The process nt is 

uncorrelated and as far as its second-order properties are 

concerned, it behaves as an independent process. However, unlike 

strictly independent processes, the optimum mean square error 

predictor which is at most quadratic, and looks two steps back in 

tt., is simply 

where 
222 

B - a/ (1 + a 0) • 

From this simple observation, it is obvious that there are processes 

that do not follow the linear representation given by (1.5). 

A generalization of (1.5) is 

-
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in analogy to a Taylor series expansion. Such functional expansions 

were first studied by Volterra and introduced into non-linear sta-

tlstics by Weiner, so the expansion in (1.6) is generally known as 

the Volterra-Weiner expansion. One may always suppose that the co-

efficients hij ••• n are unaltered by permutation of the indecies. 

Though there is a growing literature on such representations, the 

problem of estimating the generalized transfer functions hij ••• n has 

proven to be intractable primarily because of the large number of 

parameters involved. Progress in using such a representation is 

likely only if the process xt can be represented by a small number 

of parameters or if the coefficients hij ••• n have some sort of 

"smoothness" property. In the linear case, the smoothness condition 

is imposed on HI(f), the Fourier transform of hi' by insisting that 

HICf) be a decent function or, in the case of an AlMA process, that 

HICf) arises from a rational function. 

Since transfer functions have proven to be exceedingly use-

ful in linear problems, an obvious generalization is to define a set 

of generalized transfer functions by 
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~ 
11 

and so on. 

If the exciting or initiating process et can be represented 

as 

e • t 

then (1.6) can be written with the defined generalized trausfer 

functions as 

x • t 
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+ ••• (l.8) 

In this representation, Hl(f) is the familiar linear transfer 

function. In the second integral, H2(f 1,f2) dZ(f l ) dZ(f2) 

represents the contribution of the components with frequencies f1 

and f2 in et to the frequency f1 + f2 in xt • In the simple case 

where 

then 

e - ae t 

2 .. 1£ t 
o 

dZ(f) • alif _f o 

so that (1.8) gives 

6 .. 1£ t 

+ a3H
3
(f ,f ,f ) e 0 +. . . 
000 
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Thi8 is the faailiar result that a non-linear proce8s acting on a 

sinusoidal input at a frequency fo produces an output containing 

integer .ultiples of the frequency foe 

1.2 Polyspectra 

For linear problems, the 8econd order-.oments of the exci-

tation et and the process xt are used to estimate the coefficients 

in an ARMA representation, though they do not completely determine 

the coefficients. For non-linear processes, higher-order moments 

and their Fourier transforms may provide an insight. For the 

process xt ' the third and fourth euaulants are defined by 

13 

(l.9) 



where "z is the _an of ~ 

This notation, vbile unconventional, clearly reveal. the s,..etry in 

the TiS. We note that for a stationary process, the origin can be 

selected so that a given T can be set to zero, e.g., R3(T
l

,T2,O) 

in which case (1.9) reverts to the usual fora. 

The third- and fourth-order polyspectra are then defined by 

(l.10) 

-~ 
T3---
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The inverse transforms are then 

-2d(f
2

T
2
+f

3
T

3
) 

e 

The relationships among the frequencies in 83 and 84 follow 

from the definition of 1.3 and 1.4" Por the representation 

then 1.3 beco._ 

x - '" -t x 

(1.12) 
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aDd si~larly for R4• 'or the ease of a 8trictly 8tationary 

proce .. , where R3 UDcballled by the s_ 8hift of T l' T 2' and T), 

E[dZx(f1)dZx(f2)dZx(f3)] .u8t vanish except alolll the plane 

Then (1.11) 8hoV8 that for a stationary proce88, 

(1.13) 

A relationship which .ust be interpreted with 8088 care, 8ince 

13 (f
1

, f
2

, f) dfl df 2df) is a 8ingular .aasure, vanishing off the 

plane £1 + £2 + f3 - 0 • 

In the literature, it is conventional to suppress depen-

dence of I) on £) - -£1 - £2 80 that I) is denoted 

(1.14) 

Similarly, noting that £4 - -£1-£2-£3' it is customary to write 

(1.15) 



. . 

Por historical reasons, B is known as the bispectrua and B4 the 

trispectrua even though (1.13) suggest that B should really be 

called the trispectrum and so on; we will abide by present conven-

tion. 

1.3 Polyspectra for Gaussian Processes 

A well-known result of statistical theory is that all jOint 

cumulants higher than the second order vanish for a multivariate 

normal process. The immediate and important consequence is that all 

spectra of order higher than two vanish for a Gaussian process. The 

higher-order spectra would thus appear to be of use in investigating 

properties of a non-Gaussian stochastic process or of a non-linear 

system driven by a random input. As noted above, polyspectra give a 

measure of the phase correlation between components whose frequen-

cies sum to zero. 

While the above paragraph captures the essential features 

of polyspectra, there have been few genuine applications. In part, 

this has arisen from the large data volumes and heavy computation 

required to numerically evaluate higher-order spectra and in part 

from statistical difficulties in interpreting the results. However, 

it would appear that the most important impediment has been the lack 

of a physically understandable interpretation of polyspectra. As a 

first step, we consider cross polyspectrum. 
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1.4 Cross Polyspectrum 

The cross-bispectrum is a simple generalization of the 

bispectrum. A form of the third-order moment for two processes Yt 

and xt ' where for tutorial purposes xt can be thought of as an input 

into a system and Yt the output, is 

and the corresponding bispectrum is 

then 

and if 

y -t 

An illustrative exaaple of the use and limitations of the 

bispectral analY8i8 i8 contained in the proce8S 
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y -t 
- - - (1.16) 

where xt is a zero mean stationary Gaussian process, and Nt is a 

zero mean noise independent of xto From (1.8), we see (1.16) takes 

the form 

y -t 

The mean of y t is 

where P is the power spectrum 

P(f)df • E[dZ (f)dZ (-f)l x x 

(1.17) 

(1.18) 

The first odd-order moment of Yt is thus dependent on the quadratic 

transfer function 82(f1,f2) • 
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The second-order moment takes the fOB 

standard decomposition theorem for even-order moments of Gaussian 

processes, 
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and (1.17) reduces to 

R (t)­
yy 

e 21fift p( f )df 

The second-order moment of Yt thus contains products of the power 

spectra of x t weighted by the quadratic transfer function. 

An examination of the cross bispectra is more revealing of 

the underlying structure of the generating process. The cross 

moment is 

GO GO GO 

+ 

GO GO -
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since the odd-order moaents of the Gaussian process vanish. Taking 

the Pourier transform of both sides, we obtain 

and arrive at the familiar result for linear systems: 

The cross-bispectrua B can be obtained fro. the representation of 
yo 

Yt given in (1.17): 

. .... . . .. . .. . . . . . .... .. .... ~ ....... 
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..... . 

The first integral vanishes since xt is Gaussian, and the second 

term can be decomposed as above so that 

We now consider the quantity 

From (1.18) we note that the first integral in (1.20) is just 

E[Xt +1Xt +m]E[Yt] , so that 
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Since hta can be made symmetric in t and a, then 82(f1,f2 ) is 

symmetric in f1 and f 2• The cross-bispectrum Byxx(f 1,f2) is then 

and the quadratic transfer function is determined by 

For the particular process given in (1.17), it is possible to 

recover the linear and quadratic transfer functions by measuring the 

power spectrum of the input xt ' the cross spectrum Byx' and the 

cross-bispectrua Byxx (f l ,f2) For IIlOre general processes with 

teras of various orders, this is no longer possible, and an itera-

tive calculation is required. 

1.5 Meaning of a Finite Bispectrua 

If a tiae series Yt has a statistically silDificant non­

vanishing bispectrus, then two interpretations are possible. The 

generating process contains non-linearities which .. y be described 

in the fora of (1.6) or possibly some other representation, with the 
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excitation function ei being Gaussian or non-Gaussian. Alterna­

tively, the generating model for the process is purely linear but 

the excitations et are non-normal, have a finite skewness, and are 

independent. In this case, the third-order moment for 

• 
x -t 

is 

since e t are independent. From the definition of the linear 

transfer function HI(f) , 

the bispectrum of xt is 

The power spectrum of xt is just 
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so that the square of the bicoherence given by 

is also a constant. Thus for a linear system with a Gaussian input, 

the bicoherence will vanish, and a linear system with a non-Gaussian 

input will have a constant bicoherence not zero, provided the input 

has a finite skewness. 

The determination of the bispectrum does not by itself 

permit the identification of a non-linear underlying process or of a 

non-Gaussian excitation function. The excitation function could be 

non-Gaussian but have a vanishing skewness, and the resulting 

bispectra of xt would vanish. Alternatively, a constant bispectrum 

does not imply a linear process. A finite and varying bispectrua is 

certainly suggestive of non-linearities in the generating process. 

It is for this reason that the bispectra analysis of speech, with 

strongly bispectral peaks for the vowels, suggests that speech 

production has important non-linear characteristics. Similarly, in 

underwater acoustics bispectral signatures may provide powerful 

methods for classifying sound sources. 
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2.0 BISPECTRAL DETECTION 

2.1 Introduction 

Present practice in acoustic detection rests on discriai-

nating signal from noise on the basis of energy distribution in 

frequency and time. That is, waveform and phase structure of sig-

nals are not exploited. The existence of sequences of harmonically 

related lines in signal spectra suggests that, at least in the case 

of machinery produced sound, there may be useful phase information 

in signals of interest. Beyond this, it might be supposed that 

broadband signals produced by highly nonlinear hydrodynamics (flow 

noise and blade-rate signatures) are also associated with stable 

phase relations between signal components of differing frequencies. 

The question addressed here is whether such phase relations, if they 

exist and are not destroyed by propagation, could be used to enhance 

detectability of weak signals. 

We consider the received record, R(t), to be the sum of a 

signal, S(t), and noise, U(t). Over any record of length T starting 

at time T these have Fourier representations 

[S(t); U(t)] - t [.(~,T); U(~,T)] ei~t 
~ 
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where ~ is an integer multiple of 6w. 2w/T and 

1 . -
T 

't+T 
f [Set); U(t)] e-i~dt • 
't 

The received record has Fourier aaplitudes 

r(~,'t) • s(~,'t) + u(~,'t) 

For this discussion it will be assu.ed that records are 

prefiltered so that the power spectrua of noise is unifora, that i8 

where < > denotes a long-time average over 't • Further, it is 

assumed that noise is the sua of many contributiona fro. independent 

sources and may be approximated 88 normally distributed. Neither of 

these idealizations is strictly accurate for oceanic acoustic noise, 

but they are fair approximations which do not prejudice the eoapari-

son made here. 

The interest here is in learning how use of additional 

information about the nature of the signal, S(t), affects detect-

ability. For this comparison three siaple detectors are considered. 

28 
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2.2 The Three Detectors 

Energy detection is based on some variant of the spectro-

gr .. 

where the average received power is 

I 
T 

T+T 
J a2(t) dt - I ~ P(~,t) 
T 

The spectrum is the time average P(~) - <P(~,t» The simplest 

energy detector is of the form 

where the SUIlS are over particular frequency regions g and 

(2.1!) 

g 
u 

Here g is a region of positive frequencies occupied by the signal 

and g i8 a non-overlapping region in which signal is absent. N 
u 

and Nu are the number of fundamental frequency intervals in the 

respective frequency regions; N is the time-bandwidth product 

I~ • T/2Tf • The frequency regions need not be continuous and g 
g 

might, for example, be a series of bands encompassing various 
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anticipated machinery signal lines. The second tera in (2.1E) 

siaply serves to subtract froa DE an estiaate of the noise 

contribution in the first tel'll. In considering detector output 

variability, it is assumed that N » N • u 

Bispectral detection might be based on the bi-spectrogram 

where the received signal's average cube i8 

t Aw i(W1,W2 ,T) • 
w2 

The bispectrum i8 the time average 

where • is the bi-phase. Prom the view of signal-noi8e discri-

mination, the bispectrum is a simple construct which makes use of 

the phase differences between different frequencies; the particular 

pha8e information preserved i8 that which contributes to 8kewnes8, 
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A simple bispectral detector is 

(2.18) 

where • is an!!. priori estimate of the bi-phase • • Note that 

since includes the Fourier amplitude at frequency 

~1+ ~2 ' this detector makes use of energy outside n. Use of 

this detector requires that the bi-phase be somewhat predictable so 

that the various terms in the sum (lB) can be phased to interfere 

constructively. In practice, detection could be based on IDBI, in 

which case the only requirement would be that '(~1'~2) be reason­

ably constant for ~1 and ~2 in n. 

Maximal signal waveform information utilization is embodied 

in a detector based on matched filtering with a perfect replicate of 

the signal. Such a detector can be expressed as a convolution of 

signal and the record and is equivalent to 

n 
DM(T) • r S(~,T) r(-w,T) 

~ 

(2.1M) 

This is not, of course, a realizable detection option, since S is 

not known; it is included here only for comparison purposes to show 

what could be achieved if all signal waveform information could be 

used. 
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The three detectors have co..an features. All involve a 

sample of inforaation fro. a region of frequency space 0 and time 

T; if 60 is the bandwidth of 0, the size of this sample is th 

ti.e-bandwidth product N - 60 • T/2w. If applied to a record 

consisting of only noise, all detectors will produce some output 

DI(T) but the average output over aany realizations, 

<DI(T» , will vanish. In the case of energy detection, 

<DE:> - 0 because .!.. priori info1"1l&t1on about the noise spectru. was 

used to make <DE> - N Pu 

be strictly achievable but 

N - N Nu Pu - 0 ; in practice this may not 
u 

the bias, <DE>' will be saall. 

<D'> - 0 because the bispectrum of n01"1l&1ly distributed noise, 
B 

having no stable inter-frequency phase relations, vanishes; in 

reality the bias may not strictly vanish for some noise sources but 

it should be small unless the noise arises from a localized source 

which we here consider a signal. <DM> - 0 because noise is not 

correlated with signal. 

2.3 Simplified Performance Measures 

Detector sensitivity to Signal may be characterized by the 

mean output, <D>. For comparison purposes, the value of this mean 

output is 
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<D ) - E E 

<D ) .. qE3/2 
B 

where E - <S2) is the signal variance. 

The bispectral detector's signal output depends on 

(2.2E) 

(2.2B) 

(2.2M) 

In the simplest case when the bi-phase • and its estimate • both 

vanish. q is simply the signal skewness <S3)/E3/2. When the inter-

frequency relationship is more complex there is no simple interpre-

tation of q but it remains true that there is no a priori bound 

which can be placed on its magnitude. If the probability density 

function of S is sufficiently dispersed (i.e. the probability of 

extreme values is much greater than for a Gaussian distribution with 

the same variance) then large values of q are possible. On the 

other hand, if the probability density is central (with extreme 

33 

.. .. . .. .. .... -.. , -..... .. 
· ... - .. .. . '. .. .. 

· -.. 
· -. ,.,. . 

'. 

· .. " . 

~:.:~~ .. :: .. 

• .... -:-..-:--4 
.': .... :J

i · ' .. .' : .... 
:-:" ':>:i 
:.,:,::) 
-=-.:..'-_ ..... -.~ 

01', .' ~ ........ ., -. . .. · ..... " '" .. '\.~ ...... ' .. .. ... ......... ' .. - .. '." 

.. ~~::) 
.' ... ~ • 

'. ' 

..... . , . 
'. 

~ 
. .. .. .... .... - " .. ~.~ .',: ...... ""- ...... :.. . .. .. ~ ... ,,"~,,:':'j 

:.:: ~::.::::~ :~::::.: :::: :'. ,: ::::'" "~'.'; :'.: ~~ :~~:>r··::: .. ~: :'-::::'.:? :::~: ~ /\:::;~~~\ :~~: :'i~·.: .' ~:: ~.~.:., .\::: .}<: ~:~:.~ :~: .~:~ /~ ::::::~::::~~ ~<:~~~: .~~. ?\:~. ~~~ ~i~ ~ 



values having probabilities comparable to a normal distribution) 

then q will be of order unity. Without knowledge of the signal's 

bi-spectral character no finer bound can be placed on q. Our 

approach here is aimed at the order-unity-q case. We note that if 

the distribution of S is dispersed on q can be large, but to make 

use of the extreme values of S which make q large will require use 

of long range records, much longer than the T required to achieve 

frequency resolution. Further, the extreme events responsible for 

large q would also be large individual events to an energy detector 

(such as DE) and might be detected on this basis. 

In principle, (2.2E) is valid for any G, T but in prac-

tice time varying sources or Doppler shifting would require G to 

increase with T. Achieving (2.2B) requires that the phase of the 

bi-spectrogram be perfectly stable and predicted by , of (2.lB). 

Frequency dependent propagation delays would thus degrade this 

output in practice and, to the extent that differential propagation 

delays increase with frequency separation, would place an upper 

limit on the bandwidth of G; Similarly, time varying source struc-

ture or Doppler shifting would make prediction of variations of bi-

phase more difficult as T increases. Achieving (2.2M) requires a 

perfect matched filter in the presence of propagation phase dis tor-

tion and the requirements for this become more stringent as T or the 
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bandwidth of Q increases. In the spirit of a simple comparison we 

have assumed that T and Q are chosen such that frequency and phase 

stability do not degrade the detector signal outputs (2.2). 

In the absence of signal the detector outputs, DI, are 
1/2 

random variables with standard deviations, o. <IDII2) , which 

can be computed under the assumption that the noise is normally 

distributed and stationary: 

o • N1/2 P ~w E u 
(2.3E) 

o .. 
B 

12 N [P ~w]3/2 
u 

(2.3B) 

o • 
M 

(2.3M) 

Here N is the number of (positive) fundamental frequencies in Q. 

The probability density function of each DI differs and depends on 

N. For N • 1 (extreme narrow band processing), DI 
E 

is distributed 

2 2 - 1 where 2 is a chi-squared variable with two as x2/<x2) X2 
I 

Y Y 1/2 degrees of freedom. DB is distributed as exp(iS) where 1 2 

Y1 and Y2 are independent 2 
X2 variables and S is uniformly 

distributed over [O,2w]. DM is normally distributed, as are 

D' and 
E DB in the limit N + • • 

35 

" .... -:-:-:-;. . . .... , 
. '-:-:.:.:.-:.~ 

." . 
1 

. ~ 

. - -.. . . -

..... 
;...~ ..... . 

•• t--.-.~ -: .......... 

.. .... .: .. ~ .. 
,.'"., --' .. -." ... --.... ........ .. .. ., .. 
~ .. .. .. , ..... 
~'.":" 

.. t.. -!'-~!II 
' .. -: ............... . 
'.. .. ~ ,,'" .. ' .... :" ." : ............ 
. . ' .. '-,'." ............. ... -... -" -: ..... "'\... .:- .... 

..... . ~. '.' ._-
~-.----:.;.-... ..:...... 

• 

'. 



'-' . 

t •. 
, ~ .. 
~ !! .• 

• 

. , 

.,.-'''' ..... 
t .... 

-: ... ~ 
"~ 
t~ ... . ~.:-

Comparison of the different detectors is made difficult 

because (1) <DB> depends on the skewness, q, and the signal variance 

E whereas <DE> and <~> depend only on E, and (2) the bispectral 

detector makes use of energy outside the signal bandwith g whereas 

the other detectors depend only on the energy within g. There is 

no limit to the size of the skewness and the larger q, the .ore 

useful is bispectral detection. 

For comparative purposes, results are presented in terms of 

the signal to noise ratio 

g 

p - E/t P (w) Aw • w u 

the ratio of signal variance, E, to the noise variance in 

n,NP 61.&). 
u 

In terms of p , the mean signal to noise ratios are 

(2.4E) 

(2.4B) 

(2.4M) 
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2.4 Comparison 

To compare detectabilities, we imagine the detection 

criteria 

where the thresholds DEc' Dsc' ~c are set to produce a specified 

probability of false alarm (PFA). The signal strength required for 

reliable detection at the specified PFA is then characterized by 

p(PFA) , the signal-to-noise ratio required to produce signal 

output (D) equal to the threshold for false alarm rate PFA. 

Of fundamental interest is how the detectable signal-to-

noise ratio depends on the time-bandwidth product N as N + •• In 

this case all detectors have normally distributed outputs and 

p (PFA) • q-2/3 N-1/ 3 G(PFA)2/3 
B 

(PFA) .! N-1 G(PFA)2 
PM 2 
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where G(PFA) is the value a normally distributed variable with zero 

mean and unit variance exceeds with probability PFA. From the 

dependences of p on N in (2.5), it is clear that the bispectral 

detector is inferior at large N compared with the energy detector 

(which makes no use of phase information in the signal) and the 

matched filter detector (which makes use of all information about 

signal waveform). The power of G(PFA) appearing in (2.5) depends on 

which moment of the noise contributes to the detector fluctuation; 

~ is essentially a first moment detector, DE second moment, and DB 

third moment. Since G(PFA) is such a weak function of PFA, the 

power of G in (2.5) is not a significant practical consideration 

except at extremely small PFA. 

For completeness, the extreme of narrowband processing with 

N - 1 is associated with the following values of p: 

PFA PE 
2/3 

q PB PM 

0.1 1.3 0.9 0.8 

0.01 3.6 2.1 2.7 

0.001 5.9 3.4 4.8 

(2.6) 

.. . . 
'.' 

. .. ~ , 
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The values of PM are determined from the and nol1ll&l 

distributions; PB was found by Monte Carlo simulation using a 

random number generator. 

It is, of course, possible to further reduce the required 

signal-to-noise ratio for reliable detection by incoherently 

averaging the energy and bispectral detectors. 

the form 

D(m) 1 --M 

K 
t 

m-1 
D(T ) 

m 

Use of a detector of 

reduces the standard deviations, a, in (3) by a factor of M-1/ 2• 

In this case, the relations (2.4) and (2.5) pertain so long as N is 

the total time-bandwidth product KO/Aw. 

2.5 Conclusion 

The energy signal-to-noise ratio required for signal detec-

tion by spectral and bispectral detectors depends on both the 

detector time-bandwidth product, N, and the acceptable probability 

of false alarm, PFA. As N increases, bispectral detection shows a 

relative disadvantage of the order N1/ 6• Its disadvantage decreases 

as the PFA is reduced. However, for realistic time-bandwidth 
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products the bispectral detection disadvantage is modest. Even for 

a bandwidth of 100 Hz and a coherent processing time of 2 hours, the 

N1/ 6 factor corresponds only to a 10 db difference in required 

signal-to-noise at a PFA of 0.001; one minute integration corre-

sponds to 6 db. The signal-to-noise required for bispectral detec-

tion also depends on the signal skewness, q. If q is large enough, 

it can compensate for the N1/ 6 bispectra1 disadvantage. Bispectra1 

detectabi1ity also depends on how well the theoretical maximum 

(2.2B) can be approached. The critical optimistic assumption in 

(2.2B) is that the bi-phase of the received signal is predictable. 

This requires (1) that the signal bl-phase at the source be stable, 

(2) that it be predictable, and (3) that inter-frequency phase rela-

tiona not be significantly altered by propagation from source to 

receiver. 

We cannot assess the degree of optimism associated with the 

a •• uaption of predictable signal bi-phase. First, we have no infor-

.. tion on the inter-frequency phase relations in real signals. It 

i. expected that there will be stable phase relations between 

.. chinery haraonics, but if these depend on geometry (as supposed in 

Munk'. localization concept), or on source identity (which would 

per.it bi.pectr.1 cla •• ification), they will be difficult to predict 
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and thus detectability will be degraded. Finally, some careful work 

on phase distortion is required to determine if bi-phase would 

reaain stable when acoustic propagation is multi-path • 
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3.0 BISPECTRAL EXPERIMENTS 

3.1 Introduction 

We are interested here in exploring (1) the bispectral 

signatures of signals generated by highly nonlinear, quasi-periodic 

processes, and (2) the efficacy of bispectral analysis in extracting 

such signals from noise. Toward this end, signals rich in harmonic 

content were generated numerically, purposely contaainated by 

Gaussian white noise, and subjected to spectral and bispectral 

analysis. 

The signal a(k) k - 1, • • • N was generated by solving the 

coupled nonlinear differential equations 

da 
-- - a - y - sin z dt 

~ - -y + aw + ga dt 

dw -- -dt - w - ay 

dz 
-- - a dt 
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in which we have one adjustable pa~ameter: g. As g varies, so does 

the topological character of the solution to (3.1). For g' 1.5 

the solution for long times, t, is a - y - w - z - O. For g > 1.5 

periodic and more complicated asymptotic motion ensues. 

We solved (3.1) for a variety of g in the range 2' g , 4 

for the initial conditions a(O) - yeO) - w(O) - 1.0 and z(O) - 0.5, 

which has no special significance. We then stepped the solution 

for, typically, 104 steps and discarded the first few thousand 

points to remove the influence of transients reflecting the initial 

conditions. In Figure 3.1 we show a(k) - a(kdt), where dt is a 

fixed time step used in the solution of (1), at g - 2.5615. The 

initial transient is visible as is the final asymptotic behavior. 

The latter is shown again in Figure 3.2 to emphasize the non-

sinusoidal nature of our signal. In Figure 3.2 a(k) minus its 

average (av) is displayed. All results to be shown here correspond 

to the choice g - 2.5615 shown in Figure 3.2. 

3.2 Power Spectrum 

The power spectrum of the signal a(k) - av was generated 

from a series of 2048 points taken from the asymptotic orbit (Figure 

3.2). A cosine tsper was applied to the first fifty and last fifty 

". .' ". 
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flaure 3.1 The initial behavior of the "signal" defined by (3.1) with the parameter 
g = 2.56. 
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points to smooth the discontinuities of the chopped signal. Figure 

3.3 shows the natural log of the power spectrum for the first 64 

frequencies of the 1024 computed. In Figure 3.4 the averaged power 

spectrum, generated by taking 26 • 64 samples of length 211 • 2048 

from a data sample of 217 points of a(k), is presented. Each sample 

was tapered and Fourier transformed, then the spectrum was averaged 

over 64 samples. This averaging should have little effect on the 

signal spectrum, which is, in fact, what we see. Averaging elimi-

nates some of the effects of noise in our samples (noise arising 

from machine round off errors) and of the phase relation between the 

signal oscillations and the record ends. 

Next we added Gaussian random noise with a white spectrum 

to the signal and processed the noisy signal in the same fashion. 

In Figures 3.5 and 3.6 the power spectrum of the contaminated signal 

is shown for two different levels of power in the noise. In Figure 

3.5 everyone would see the fundamental and sharp eyed optimists also 

can make out a harmonic (or two?). In Figure 3.6 even the optimists 

are restricted to being fundamentalists. 

The problem of detecting the signal spectrum peaks in 

Figures 3.5 and 3.6 is, of course, an example of energy detection as 

discussed in Section 2. Within this context, the task is to 
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Figure 3.3 Natural logarithm of the signal power-periodogram computed from a single 
realization. Only the lowest 64 frequencies are shown. 
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Figure 3.4 Natural logarithm of the signal spectrum computed from 64 realizations 
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FllUfe 3.5 Natural logarithm of spectrum of signal plus Gaussian white noise computed from 
64 realizations. 
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Flswe 3.6 As Figure 3,5 but with more noise power 
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discriminate between spectral structure caused by the signal and 

random fluctuations of the noise spectrum. The standard deviation 

of the random fluctuations given by (2.3£) co.pares well with the 

evidently random wiggles in Figures 3.5 and 3.6. 

3.3 Bispectra 

Now we turn to the bispectrua. First examined was the 

diagonal bispectrum 

~ ......, ....,* 
B(f,f) - <a(f) a(f) a (2f» 

where ~(f) is the Fourier transform of a(k) - av, with the usual 

cosine taper. In Figure 3.7 we display log IB(f,f)1 2 from one 

sample of 211 points; 64 frequencies are shown and there is no noise 

added to the signal. In Figure 3.8 we have taken 64 sa.ples of the 

noise free signal and averaged B(f,f) over that ensemble. Since 

B(f,f) is cubic in the signal, averaging should reduce the effect of 

any Gaussian noise (round off error) and there is some evidence of 

this in Figure 3.8. 
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Flgate 3.7 Natural logarithm of the squared magnitude of the signal diagonal bi-periodograrn 
B(f.O taken from a signal realization. Only the lowest 64 frequendes are 
shown. 
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Figure 3.8 Natural logarithm of the squared magnitude of the signal diagonal bispectrum 
taken from 64 realizations. Dominant peaks occur at fo• 3fo• Sfo ... but additional 
structure is evident at 112 fo. Sf0l2. 9£012. llf0l2. 
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Figures 3.9 and 3.10 show the diagonal bispectrum of signal 

plus Gaussian noise for the same noise levels as used in Figures 3.5 

and 3.6 for the power spectrum. It is quite clear that an ensemble 

of 64 members has not produced sufficient reduction of background 

noise to make the bispectrum a significantly more efficient sIgnal 

identifier than is the power spectrum. This is consonant with the 

conclusions of the detectability assessment in Section 2. In fact, 

the bispectrum standard deviation of (2.3B) corresponds to noise 

levels of 31.5 and 35.5, respectively, in Figures 3.5 and 3.6. This 

indicates that most of the structure in these figures is due to 

random sa-pIing errors. 

We made one further exploration into the structure of 

By locating the fundamental, fo ' of the signal from 

the power spectrum we calculated 

averaged over a few frequency bins on each side of foe Figures 3.11 

and 3.12 show log IB(fO,f)1 2 for one sample and then averaged over 

64 samples with no noise. In Figures 3.13 and 3.14 Gaussian noi8e 

wa8 added at the previou8 levels and averages over 64 samples were 

taken. 
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figure 3.9 Natural logarithm of the squared magnitude of diagonal bispectrum of signal plus 
noise taken from 64 realizations. The noise energy level is the same as in Figure 
3.5. If enough realizations had been averaged. the noise contribution would 
vanish. 
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FJewe 3.10 As Figure 3.9, but with the higher noise energy level used in Figure 3.6 . 
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FIgure 3.11 Natural logarithm of the squared magnitude of the signal bi-periodogram BU'o.O 
as a function of f. The frequency fo is the peak of the signal power spectrum 
(see Figure 3.4). This is an average over one realization. 
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Figure 3,12 As Figure 3.1 but averaged over 64 realizations . 
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Figure 3,13 Natural logarithm of squared magnitude of the bispedrum BUo• 0 of signal plus 
noise obtained from 64 realizations. The noise level is the same as figures 3.5 
and 3.9. 
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Figure 3.14 As Figure 3.13 but with the higher n('lise energy of figures 3,6 and 3.10. 
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3.4 Discussion 

Comparison of the noise-free power spectrum (Figure 3.4), 

the diagonal bispectrum B{f,f) (Figure 3.8), and B{fo,f) 

(Figure 3.12), provides some measure of the utility in signal 

classification provided by the magnitude of the bispectrum. The 

spectrum shows little more than a sequence of harmonic lines at 

fo' 3fo ' ••• {2n + 1) foe The magnitude of the diagonal bispectrum, 

and even more so the magnitude of B{fo,f), shows evidence of inter­

actions between mUltiples of fo and the subharmonic ~ f o ' This 

kind of information should clearly permit discrimination of differ-

ent signal sources which have identical power-spectral signatures. 

The phase of the bispectrum should provide even more description if 

it does not depend on geometry and/or source operating conditions. 

All in all, the cuts of B{f 1,f2) we have taken do not show 

the bispectrum to be a very valuable indicator of the presence of 

mUltiply harmonic signals in the presence of Gaussian noise. 

Several caveats are, however, in order: 

(I) Our signal had weak second harmonics and subhar-

monics. We examined spectra and bispectra for another 

value of the parameter g for which strong harmonics of 

all orders were present. The bispectrum was rich in 
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detail and structure, but no signals were observed in 

the presence of noise using bispectra when they were 

not also visible in the power spectra. 

(2) We took only two cuts through the two-dimensional 

frequency space of the bispectrum B{f 1,f2). One 

should really display the whole 2 dimensional B{f1,f2) 

surface to exploit the value of B{f 1,f2) without 

.!.. priori bias about which cut has the essential 

information. The results of Kim and Powers (IEEE 

Trans Plasma Sci., Vol. PS-7, No.2, June 1979, 

pp. 120-131) support this view. We have Simply not 

had the time or computer expertise to explore this 

aspect of B{f 1,f 2). It is not a formidable task. 

(3) Our averaging ensembles had only 64 members. Since 

incoherent averaging causes the standard deviation of 

the bispectrum to disappear only as {degrees of 

freedom)-1/2, we might have expected only a factor of 

8 improvement at best in our averaging process. This 

clearly argues for bigger ensembles. We did not 

explore averages of the bispectrum over an area in the 

fl,f2 bispectrum space. This leads to faster noise 

suppression but might also lead to loss of signal 

bispectrum unless the bi-phase changes slowly with its 

two frequency arguments. 
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4.0 BISPECTRAL LOCALIZATION 

4.1 Introduction 

There are many problems where phase is irrelevant. An 

ocean wave record taken from 10:00 to 11:00 will not differ signifi-

cantly from one taken between 10:01 and 11:01. However, the phase 

difference between two nearby recorders gives significant informa-

tion about wave direction. In order for this phase difference to be 

measured with adequate precision, the two recorders must be suffi-

ciently close to give coherent records. 

This is the case where cross-power-spectral analysis 

provides information in phase difference and coherence between two 

records at ~ frequency. In the case of auto-bispectral analysis 

we obtain relative phase information and bispectral coherence 

between two frequencies from ~ record. (The next step of cross-

bispectral analysis between frequency f1 in record 1 and f2 in 

record 2 is not of interest at the moment.) We need to say what is 

meant by "relative phase" at two frequencies. The simplest 

procedure is to (i) split the record into two by pass-band filtering 

at f1 and f 2 , (ii) heterodyne both to a single (possibly zero) 

frequency, and (iii) obtain the a cross spectrum between the two 
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records. The bispectrum provides a systematic way for doing just 

that. Step (iii) is, of course, in the spirit of power spectral 

analysis, and so some will argue that the procedure outlined is just 

an a~plication of ordinary power spectra. We will take the view 

that any analysis involving two frequencies is distinctively dlffer-

ent from the single frequency power spectrum analysis. 

4.2 The Bi-Phase 

Consider two sources aboard a submarine, separated by a 

distance D, and emitting signals s'(t) and S"(t), respectively. At 

a receiver R the received signals are 

S'(t) - E S'(w)ei(wt+. ' ) 
w 

S"(t) - E S"(w) ei(wt+.") , 
w 

.'(w) - " - k(w)r ' 

~"(w) - ," - k(w)r" 

with k - w/c ; here " and ," are the relative phases of the 

two sources and depend on w. For illustration, ambient noise is 

neglected so that the receiver hears only the sum of the two signals 

S(t)-S'+S" E Sew) 
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and it follows that 

i,/.I i".1 I 
SeW) - SI(W) e T + SII(w)e T (4.2) 

The bispectrum can be found as the double Fourier transform 

of the triple mean product of s, 

(4.3) 

and equals 

(4.4) 

which serves as a definition of the bispectral phase 'BS· 

4.3 The Simplest Case 

We imagine a single frequency and its harmonic and set 

SI(W) - l5(w-G) , SII(W) - 15(11)-20) 
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• 

We compute B(O,O) from (4.3), which, on comparison with (4.4), 

yields 

with k - Ole • 

• - 2.' - ." - 2,' - ." - 2k(r' - r") BS 

Figure 4.1 sketches the locus of the hyperbolae which have 

equal range difference, r' - r", fro. the sources 8' aDd .". 

These are expressed in fractions of the source 8eparation D. For 

the submarine at a fixed range r, changing orientation i8 equivalent 

to moving around a circle on Figure 4.1. Suppose a trailed 8ubaar-

ine turns on its track (which is standard operating procedure). 
o 0 

Then e goes from 0 to 180 , and 'BS changes by 4 kD. This 

ought to give an early warning; the measured phase shift A+BS 

yields an estimate of D which is of diagnostic value. A further 

diagnostic is the value • - 2,' - ." BS at mid-maneuver. The 

time-history of 'BS(t) for small r is slightly different than for 

large r which provides some information about range. Similar 

information might be obtained from an increase in Doppler as the 

target turns toward the trailer, assuming that ~, and ~" do not 

change. But the same (erroneous) conclusion would have been reached 

from an increase in source frequency. However, differential Doppler 
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S' 

Fleul'e 4.1 0 is the distance between the sources s' and s". The differential distance Sr = 
r' - r" is determined by the bi-phase. The figure shows lines of constant Sr which 
are hyperbolae x2/a2 _ y2/b2 = 1 with 2a = Sr and 2b = [02 - (Sr)2]1/2. For 
r', r"» 0 the asymptote Sr = d cosO obtains, showing that bi-phase primarily 
determines the orientation of the source of the source-receiver path 
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measureants on Cd' and Cd" , separately, would provide the same 

localization information by making use of the change in inter-

frequency phase. 

4.4 Interpretation of Sources 

The example of an 0 generator at one point well separated 

from a 20 generator at a second point is, of course, naive. If 

the 0 and 20 frequencies are generated at both points but with 

unequal intensity, then there is still this kind of infor.ation 
L~_ 

contained in 'BS' but the interpretation is .are difficult. 
' ....... '- .. 
.. .. ' ... . 

' ....... .. .. -........ .. - ....... . 
. : .... ~ .... :-.. 
'.' .. .- ... ,"", 

Physically we adght expect that the subaarine is set into 

normal modes, but that the spatial distribution for n modes differ 

from that for 20 modes. The interpretation is then similar, with 

D representing the distance between the 0 .ade centroid and the 

20 mode centroid. 

t ~j' " I';·:", 

A fascinating speculation is whether s1atlar estimations 

can be ade from the broad-band acoustic spectrua. Th18 18 not 
• ..J" .... · _. ~ . 
..... : ~. iapossible. Suppose the flow past the bow results in so .. resonant 
~ \. . 

• oscillation, and that these develop har.onics downltre .. as.ociated 
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with hydrodynamic non-linearities. Then again we may have a 

situation such as the one modeled by the simple sources above. 

4.5 Other Frequency Ratios 

One does not want to be restricted to 2:1 frequency ratios. 

Thus, one could go to the trispectrum for 3:1 ratios, etc., but the 

formalism becomes awkward. Futhermore, how would one deal with a 

5:3 gear ratio? 
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